• 1
    Chien K. Molecular basis of cardiac hypertrophy and failure. In: Chien KR (eds). Molecular Basis of Cardiovascular Disease. WB Saunders, Philadelphia. 1998; 21150.
  • 2
    Cooper 4Th G. Basic determinants of myocardial hypertrophy: A review of molecular mechanisms. Annu. Rev. Med. 1997; 48: 1323.
  • 3
    Cooper 4Th G. Cardiocyte adaptation to chronically altered load. Annu. Rev. Physiol. 1987; 49: 50118.
  • 4
    Messerli FH. Hypertension and sudden cardiac death. Am. J. Hypertens. 1999; 12 (Suppl.): S1818.
  • 5
    Arnett DK. Genetic contributions to left ventricular hypertrophy. Curr. Hypertens. Rep. 2000; 2: 505.
  • 6
    Pasumarthi KB, Field LJ. Cardiomyocyte cell cycle regulation. Circ. Res. 2002; 90: 104454.
  • 7
    Brown LA, Nunez DJ, Wilkins MR. Differential regulation of natriuretic peptide receptor messenger RNAs during the development of cardiac hypertrophy in the rat. J. Clin. Invest. 1993; 92: 270212.
  • 8
    Winegrad S, Wisnewsky C, Schwartz K. Effect of thyroid hormone on the accumulation of mRNA for skeletal and cardiac alpha-actin in hearts from normal and hypophysectomized rats. Proc. Natl Acad. Sci. USA 1990; 87: 245660.
  • 9
    Izumo S, Nadal-Ginard B, Mahdavi V. Protooncogene induction and reprogramming of cardiac gene expression produced by pressure overload. Proc. Natl Acad. Sci. USA 1988; 85: 33943.
  • 10
    Pollack PS, Houser SR, Budjak R, Goldman B. c-myc gene expression is localized to the myocyte following hemodynamic overload in vivo. J. Cell Biochem. 1994; 54: 7884.
  • 11
    Starksen NF, Simpson PC, Bishopric N et al. Cardiac myocyte hypertrophy is associated with c-myc protooncogene expression. Proc. Natl Acad. Sci. USA 1986; 83: 834850.
  • 12
    Kim S, Li Q, Dang CV, Lee LA. Induction of ribosomal genes and hepatocyte hypertrophy by adenovirus-mediated expression of c-Myc in vivo. Proc. Natl Acad. Sci. USA 2000; 97: 11 198–202.
  • 13
    Xiao G, Mao S, Baumgarten G et al. Inducible activation of c-Myc in adult myocardium in vivo provokes cardiac myocyte hypertrophy and reactivation of DNA synthesis. Circ. Res. 2001; 89: 11229.
  • 14
    Morgan H, Gordon E, Kira Y et al. Biochemical mechanisms of cardiac hypertrophy. Annu. Rev. Physiol. 1987; 49: 53343.
  • 15
    Ojamaa K, Petrie J, Balkman C, Hong C, Klein I. Posttranscriptional modification of myosin heavy-chain gene expression in the hypertrophied rat myocardium. Proc. Natl Acad. Sci. USA 1994; 91: 346872.
  • 16
    Boheler K, Chassagne C, Martin X, Wisnewsky C, Schwartz K. Cardiac expressions of alpha- and beta-myosin heavy chains and sarcomeric alpha-actins are regulated through transcriptional mechanisms. Results from nuclear run-on assays in isolated rat cardiac nuclei. J. Biol. Chem. 1992; 267: 12 979–85.
  • 17
    Lafontaine D, Tollervey D. The function and synthesis of ribosomes. Nat. Rev. Mol. Cell Biol. 2001; 2: 51420.
  • 18
    Pestova T, Kolupaeva V, Lomakin I et al. Molecular mechanisms of translation initiation in eukaryotes. Proc. Natl Acad. Sci. USA 2001; 98: 702936.
  • 19
    Macdonald P. Diversity in translational regulation. Curr. Opin. Cell Biol. 2001; 13: 32631.
  • 20
    Sollner-Webb B, Tower J. Transcription of cloned eukaryotic ribosomal RNA genes. Annu. Rev. Biochem. 1986; 55: 80130.
  • 21
    Wolf S, Sameshima M, Liebhaber S, Schlessinger D. Regulation of ribosomal ribonucleic acid levels in growing, 3H-arrested, and crisis-phase WI-38 human diploid fibroblasts. Biochemistry 1980; 19: 348490.
  • 22
    Krauter K, Soeiro R, Nadal-Ginard B. Transcriptional regulation of ribosomal RNA accumulation during L6E9 myoblast differentiation. J. Mol. Biol. 1979; 134: 72741.
  • 23
    Jacobs F, Bird R, Sells B. Differentiation of rat myoblasts. Regulation of turnover of ribosomal proteins and their mRNAs. Eur. J. Biochem. 1985; 150: 2556.
  • 24
    Warner J. In the absence of ribosomal RNA synthesis, the ribosomal proteins of HeLa cells are synthesized normally and degraded rapidly. J. Mol. Biol. 1977; 115: 31533.
  • 25
    Edgar BA. From small flies come big discoveries about size control. Nat. Cell Biol. 1999; 1: E1913.
  • 26
    Volarevic S, Thomas G. Role of S6 phosphorylation and S6 kinase in cell growth. Prog. Nucleic Acids Res. Mol. Biol. 2001; 65: 10127.
  • 27
    Volarevic S, Stewart MJ, Ledermann B et al. Proliferation, but not growth, blocked by conditional deletion of 40S ribosomal protein S6. Science 2000; 288: 20457.
  • 28
    Makhlouf AA, Namboodiri AM, McDermott PJ. Transcriptional regulation of the rat eIF4E gene in cardiac muscle cells: The role of specific elements in the promoter region. Gene 2001; 267: 112.
  • 29
    Tuxworth Jr WJ, Wada H, Ishibashi Y, McDermott PJ. Role of load in regulating eIF-4F complex formation in adult feline cardiocytes. Am. J. Physiol. 1999; 277: H127382.
  • 30
    Nagatomo Y, Carabello BA, Hamawaki M, Nemoto S, Matsuo T, McDermott PJ. Translational mechanisms accelerate the rate of protein synthesis during canine pressure-overload hypertrophy. Am. J. Physiol. 1999; 277: H217684.
  • 31
    Makhlouf A, McDermott P. Increased expression of eukaryotic initiation factor 4E during growth of neonatal rat cardiocytes in vitro. Am. J. Physiol. 1998; 274: H213342.
  • 32
    Wada H, Ivester C, Carabello B, Cooper 4Th G, McDermott P. Translational initiation factor eIF-4E. A link between cardiac load and protein synthesis. J. Biol. Chem. 1996; 271: 835964.
  • 33
    Gingras A, Raught B, Sonenberg N. eIF4 initiation factors: Effectors of mRNA recruitment to ribosomes and regulators of translation. Annu. Rev. Biochem. 1999; 68: 91363.
  • 34
    Saghir AN, Tuxworth Jr WJ, Hagedorn CH, McDermott PJ. Modifications of eukaryotic initiation factor 4F (eIF4F) in adult cardiocytes by adenoviral gene transfer: Differential effects on eIF4F activity and total protein synthesis rates. Biochem. J. 2001; 356: 55766.
  • 35
    Ivester CT, Tuxworth WJ, Cooper 4Th G, McDermott PJ. Contraction accelerates myosin heavy chain synthesis rates in adult cardiocytes by an increase in the rate of translational initiation. J. Biol. Chem. 1995; 270: 21 950–7.
  • 36
    Nikcevic G, Heidkamp MC, Perhonen M, Russell B. Mechanical activity in heart regulates translation of alpha-myosin heavy chain mRNA but not its localization. Am. J. Physiol. 1999; 276: H201319.
  • 37
    Everett AD, Stoops TD, Nairn AC, Brautigan D. Angiotensin II regulates phosphorylation of translation elongation factor-2 in cardiac myocytes. Am. J. Physiol. Heart Circ. Physiol. 2001; 281: H1617.
  • 38
    Nairn AC, Palfrey HC. Identification of the major Mr 100 000 substrate for calmodulin-dependent protein kinase III in mammalian cells as elongation factor-2. J. Biol. Chem. 1987; 262: 17 299–303.
  • 39
    Vary TC, Nairn A, Lynch CJ. Role of elongation factor 2 in regulating peptide-chain elongation in the heart. Am. J. Physiol. 1994; 266: E62834.
  • 40
    Brandenburger Y, Jenkins A, Autelitano D, Hannan R. Increased expression of UBF is a critical determinant for rRNA synthesis and hypertrophic growth of cardiac myocytes. FASEB J. 2001; 15: 20513.
  • 41
    Siehl D, Chua BH, Lautensack-Belser N, Morgan HE. Faster protein and ribosome synthesis in thyroxine-induced hypertrophy of rat heart. Am. J. Physiol. 1985; 248: C30919.
  • 42
    Hickson RC, Hammons GT, Holoszy JO. Development and regression of exercise-induced cardiac hypertrophy in rats. Am. J. Physiol. 1979; 236: H26872.
  • 43
    Zahringer J, Klaubert A. The effect of triiodothyronine on the cardiac mRNA. J. Mol. Cell. Cardiol. 1982; 14: 55971.
  • 44
    McDermott P, Morgan H. Contraction modulates the capacity for protein synthesis during growth of neonatal heart cells in culture. Circ. Res. 1989; 64: 54253.
  • 45
    Allo SN, McDermott PJ, Carl LL, Morgan HE. Phorbol ester stimulation of protein kinase C activity and ribosomal DNA transcription. Role in hypertrophic growth of cultured cardiomyocytes. J. Biol. Chem. 1991; 266: 22 003–9.
  • 46
    McDermott P, Rothblum L, Smith S, Morgan H. Accelerated rates of ribosomal RNA synthesis during growth of contracting heart cell in culture. J. Biol. Chem. 1989; 264: 18 220–7.
  • 47
    Schmidt EV. The role of c-myc in cellular growth control. Oncogene 1999; 18: 298896.
  • 48
    Moss T, Stefanovsky V. Promotion and regulation of ribosomal transcription in eukaryotes by RNA polymerase I. Prog. Nucleic Acids Res. Mol. Biol. 1995; 50: 2566.
  • 49
    McDermott P, Carl L, Conner K, Allo S. Transcriptional regulation of ribosomal RNA synthesis during growth of cardiac myocytes in culture. J. Biol. Chem. 1991; 266: 440916.
  • 50
    Hannan R, Luyken J, Rothblum L. Regulation of rDNA transcription factors during cardiomyocyte hypertrophy induced by adrenergic agents. J. Biol. Chem. 1995; 270: 82907.
  • 51
    Luyken J, Hannan R, Cheung J, Rothblum L. Regulation of rDNA transcription during endothelin-1-induced hypertrophy of neonatal cardiomyocytes. Circ. Res. 1996; 78: 35461.
  • 52
    Hannan R, Luyken J, Rothblum L. Regulation of the ribosomal DNA transcription factor UBF during contraction-induced hypertrophy of neonatal cardiomyocytes. J. Biol. Chem. 1996; 271: 321320.
  • 53
    Strohner R, Nemeth A, Jansa P et al. NoRC: A novel member of mammalian ISWI-containing chromatin remodeling machines. EMBO J. 2001; 20: 4892900.
  • 54
    Langst G, Blank TA, Becker PB, Grummt I. RNA polymerase I transcription on nucleosomal templates: The transcription termination factor TTF-I induces chromatin remodeling and relieves transcriptional repression. EMBO J. 1997; 16: 7608.
  • 55
    Langst G, Becker PB, Grummt I. TTF-I determines the chromatin architecture of the active rDNA promoter. EMBO J. 1998; 17: 313545.
  • 56
    Grummt I. Regulation of mammalian ribosomal gene transcription by RNA polymerase I. Prog. Nucleic Acids Res. Mol. Biol. 1999; 62: 10954.
  • 57
    Reeder RH. Regulation of RNA polymerase I transcription in yeast and vertebrates. Prog. Nucleic Acids Res. Mol. Biol. 1999; 62: 293327.
  • 58
    Seither P, Iben S, Grummt I. Mammalian RNA polymerase I exists as a holoenzyme with associated basal transcription factors. J. Mol. Biol. 1998; 275: 4353.
  • 59
    Hannan R, Taylor L, Cavanaugh A, Hannan K, Rothblum L. UBF and the regulation of ribosomal DNA transcription. In: Paule MR (ed.). Transcription of Ribosomal RNA by Eukaryotic RNA Polymerase I. Springer-Verlag, Berlin. 1998; 22132.
  • 60
    Hannan R, Rothblum LR. Regulation of ribosomal DNA transcription during neonatal cardiomyocyte hypertrophy. Cardiovasc. Res. 1995; 30: 50110.
  • 61
    O'Mahony D, Rothblum L. Identification of two forms of the RNA polymerase I transcription factor UBF. Proc. Natl Acad. Sci. USA 1991; 88: 31804.
  • 62
    Hisatake K, Nishimura T, Maeda Y, Hanada K, Song CZ, Muramatsu M. Cloning and structural analysis of cDNA and the gene for mouse transcription factor UBF. Nucleic Acids Res. 1991; 19: 46317.
  • 63
    Guimond A, Moss T. Variants of the Xenopus laevis ribosomal transcription factor xUBF are developmentally regulated by differential splicing. Nucleic Acids Res. 1992; 20: 33616.
  • 64
    Kuhn A, Voit R, Stefanovsky V, Evers R, Bianchi M, Grummt I. Functional differences between the two splice variants of the nucleolar transcription factor UBF. The second HMG box determines specificity of DNA binding and transcriptional activity. EMBO J. 1994; 13: 41624.
  • 65
    O'Mahony DJ, Smith SD, Xie W, Rothblum LI. Analysis of the phosphorylation, DNA-binding and dimerization properties of the RNA polymerase I transcription factors UBF1 and UBF2. Nucleic Acids Res. 1992; 20: 13018.
  • 66
    Voit R, Kuhn A, Sander EE, Grummt I. Activation of mammalian ribosomal gene transcription requires phosphorylation of the nucleolar transcription factor UBF. Nucleic Acids Res. 1995; 23: 25939.
  • 67
    Voit R, Schnapp A, Kuhn A et al. The nucleolar transcription factor mUBF is phosphorylated by casein kinase II in the C-terminal hyperacidic tail which is essential for transactivation. EMBO J. 1992; 11: 221118.
  • 68
    Voit R, Hoffmann M, Grummt I. Phosphorylation by G1-specific cdk-cyclin complexes activates the nucleolar transcription factor UBF. EMBO J. 1999; 18: 18919.
  • 69
    Klein J, Grummt I. Cell cycle-dependent regulation of RNA polymerase I transcription: The nucleolar transcription factor UBF is inactive in mitosis and early G1. Proc. Natl Acad. Sci. USA 1999; 96: 6096101.
  • 70
    O'Mahony DJ, Xie WQ, Smith SD, Singer HA, Rothblum LI. Differential phosphorylation and localization of the transcription factor UBF in vivo in response to serum deprivation. In vitro dephosphorylation of UBF reduces its transactivation properties. J. Biol. Chem. 1992; 267: 358.
  • 71
    Hannan K, Kennedy B, Cavanaugh A et al. RNA polymerase I transcription in confluent cells: Rb downregulates rDNA transcription during confluence-induced cell cycle arrest. Oncogene 2000; 19: 348797.
  • 72
    Hannan K, Hannan R, Smith S, Jefferson L, Lun M, Rothblum L. Rb and p130 regulate RNA polymerase I transcription. Rb disrupts the interaction between UBF and SL-1. Oncogene 2000; 19: 498899.
  • 73
    Hannan R, Stefanovsky V, Taylor L, Moss T, Rothblum L. Overexpression of the transcription factor UBF1 is sufficient to increase ribosomal DNA transcription in neonatal cardiomyocytes: Implications for cardiac hypertrophy. Proc. Natl Acad. Sci. USA 1996; 93: 87505.
  • 74
    Pearson RB, Thomas G. Regulation of p70s6k/p85s6k and its role in the cell cycle. Prog. Cell Cycle Res. 1995; 1: 2132.
  • 75
    Sadoshima J, Izumo S. Rapamycin selectively inhibits angiotensin II-induced increase in protein synthesis in cardiac myocytes in vitro. Potential role of 70-kD S6 kinase in angiotensin II-induced cardiac hypertrophy. Circ. Res. 1995; 77: 104052.
  • 76
    Takano H, Komuro I, Zou Y, Kudoh S, Yamazaki T, Yazaki Y. Activation of p70 S6 protein kinase is necessary for angiotensin II-induced hypertrophy in neonatal rat cardiac myocytes. FEBS Lett. 1996; 379: 2559.
  • 77
    Wang L, Wang X, Proud CG. Activation of mRNA translation in rat cardiac myocytes by insulin involves multiple rapamycin-sensitive steps. Am. J. Physiol. Heart Circ. Physiol. 2000; 278: H105668.
  • 78
    Boluyt MO, Zheng JS, Younes A et al. Rapamycin inhibits alpha 1-adrenergic receptor-stimulated cardiac myocyte hypertrophy but not activation of hypertrophy-associated genes. Evidence for involvement of p70 S6 kinase. Circ. Res. 1997; 81: 17686.
  • 79
    Xu YJ, Ouk Kim S, Liao DF, Katz S, Pelech SL. Stimulation of 90- and 70-kDa ribosomal protein S6 kinases by arginine vasopressin and lysophosphatidic acid in rat cardiomyocytes. Biochem. Pharmacol. 2000; 59: 116371.
  • 80
    Oh H, Fujio Y, Kunisada K et al. Activation of phosphatidylinositol 3-kinase through glycoprotein 130 induces protein kinase B and p70 S6 kinase phosphorylation in cardiac myocytes. J. Biol. Chem. 1998; 273: 970310.
  • 81
    Ritchie RH, Marsh JD, Schiebinger RJ. Bradykinin-stimulated protein synthesis by myocytes is dependent on the MAP kinase pathway and p70(S6K). Am. J. Physiol. 1999; 276: H13938.
  • 82
    Yamazaki T, Tobe K, Hoh E et al. Mechanical loading activates mitogen-activated protein kinase and S6 peptide kinase in cultured rat cardiac myocytes. J. Biol. Chem. 1993; 268: 12 069–76.
  • 83
    Laser M, Kasi VS, Hamawaki M, Cooper 4Th G, Kerr CM, Kuppuswamy D. Differential activation of p70 and p85 S6 kinase isoforms during cardiac hypertrophy in the adult mammal. J. Biol. Chem. 1998; 273: 24 610–19.
  • 84
    Kunapuli P, Lawson JA, Rokach JA, Meinkoth JL, FitzGerald GA. Prostaglandin F2alpha (PGF2alpha) and the isoprostane, 8,12-iso-isoprostane F2alpha-III, induce cardiomyocyte hypertrophy. Differential activation of downstream signaling pathways. J. Biol. Chem. 1998; 273: 22 442–52.
  • 85
    Simm A, Schluter K, Diez C, Piper HM, Hoppe J. Activation of p70(S6K) kinase by beta-adrenoceptor agonists on adult cardiomyocytes. J. Mol. Cell. Cardiol. 1998; 30: 205967.
  • 86
    Raught B, Gingras AC, Sonenberg N. The target of rapamycin (TOR) proteins. Proc. Natl Acad. Sci. USA 2001; 98: 703744.
  • 87
    Cantrell DA. Phosphoinositide 3-kinase signalling pathways. J. Cell Sci. 2001; 114: 143945.
  • 88
    Shioi T, Kang PM, Douglas PS et al. The conserved phosphoinositide 3-kinase pathway determines heart size in mice. EMBO J. 2000; 19: 253748.
  • 89
    Moser BA, Dennis PB, Pullen N et al. Dual requirement for a newly identified phosphorylation site in p70s6k. Mol. Cell. Biol. 1997; 17: 564855.
  • 90
    Stefanovsky VY, Pelletier G, Hannan R, Gagnon-Kugler T, Rothblum LI, Moss T. An immediate response of ribosomal transcription to growth factor stimulation in mammals is mediated by ERK phosphorylation of UBF. Mol. Cell 2001; 8: 106373.