SEARCH

SEARCH BY CITATION

References

  • Balinsky, B. I. 1966. Changes in the ultrastructure of amphibian eggs following fertilization. Acta Embryol. Morphol. Exp. 9, 132154.
  • Bardsley, A., McDonald, K., & Boswell, R. E. 1993. Distribution of tudor protein in the Drosophila embryo suggests separation of functions based on site of localization. Development 119, 207219.
  • Blackler, A. W. 1958. Contribution to the study of germ cells in the Anura. J. Embryol. Exp. Morphol. 6, 491503.
  • Boswell, R. E., & Mahowald, A. P. 1985. tudor, a gene required for assembly of the germ plasm in Drosophila. Cell 43, 97104.
  • Boswell, R. E., Prout, M. E., & Steichen, J. C. 1991. Mutations in a newly identified Drosophila melanogaster gene, mago nashi, disrupt germ cell formation and result in the formation of mirror-image symmetrical double abdomen embryos. Development 113, 373384.
  • Dent, J. A., & Klymkowsky, M. W. 1989. Whole-mount analyses of cytoskeletal reorganization and function during oogenesis and early embryogenesis in Xenopus. In The Cell Biology of Fertilization (Eds H.Schatten, & G.Schatten), pp. 63103. Academic Press, San Diego .
  • Dixon, K. E. 1981. The origin of the primordial germ cells in the amphibia. Neth. J. Zool. 31, 537.
  • Dumont, J. N. 1972. Oogenesis in Xenopus laevis (Daudin). I. Stages of oocyte development in laboratory maintained animals. J. Morphol. 136, 153180.
  • Eddy, E. M. 1975. Germ plasm and the differentiation of germ line cells. Int. Rev. Cytol. 43, 229280.
  • Eppig, J. J., & Dumont, J. N. 1974. Oogenesis in Xenopus laevis (Daudin). II. The induction and subcellular localization of tyrosinase activity in developing oocytes. Dev. Biol. 36, 330342.
  • Gururajan, R., Mathews, L., Longo, F. J., & Weeks, D. L. 1994. An3 mRNA encodes an RNA helicase that colocalizes with nucleoli in Xenopus oocytes in a stage-specific manner. Proc. Natl Acad. Sci. USA 91, 20562060.
  • Hay, B., Jan, L. Y., & Jan, Y. N. 1988a. A protein component of Drosophila polar granules is encoded by vasa and has extensive sequence similarity to ATP-dependent helicases. Cell 55, 577587.
  • Hay, B., Ackerman, L., Barbel, S., Jan, L. Y., & Jan, Y. N. 1988b. Identification of a component of Drosophila polar granules. Development 103, 625640.
  • Heasman, J., Hynes R. O., Swan, A. P., Thomas, V., & Wylie, C. C. 1981. Primordial germ cells of Xenopus embryos: The role of fibronectin in their adhesion during migration. Cell 27, 437447.
  • Ijiri, K., & Egami, N. 1975. Mitotic activity of germ cells during normal development of Xenopus laevis tadpoles. J. Embryol. Exp. Morphol. 34, 687694.
  • Ikenishi, K., & Kotani, M. 1975. Ultrastructure of the ‘germinal plasm’ in Xenopus embryos after cleavage. Develop. Growth Differ. 17, 101110.
  • Ikenishi, K., & Kotani, M. 1979. Ultraviolet effects on presumptive primordial germ cells (pPGCs) in Xenopus laevis after the cleavage stage. Dev. Biol. 69, 237246.
  • Ikenishi, K., Nakazato, S., & Okuda, T. 1986. Direct evidence for the presence of germ cell determinants in vegetal pole cytoplasm of Xenopus laevis and in a subcellular fraction of it. Develop. Growth Differ. 28, 563568.
  • Ikenishi, K., & Tsuzaki, Y. 1988. A possible maternal-effect mutant of Xenopus laevis. I. Cytological and biochemical analyses of the unfertilized eggs and embyros. Dev. Biol. 125, 458461.
  • Itoh, K., Yamashita, A., & Kubota, H. Y. 1988. The expression of epidermal antigens in Xenopus laevis. Development 104, 114.
  • Kamimura, M., Ikenishi, K., Kotani, M., & Matsuno, T. 1976. Observations on the migration and proliferation of gonocytes in Xenopus laevis. J. Embryol. Exp. Morphol. 36, 197207.
  • Kobayashi, S., Amikura, R., & Okada, M. 1993. Presence of mitochondrial large ribosomal RNA outside mitochondria in germ plasm of Drosophila melanogaster. Science 260, 15211524.
  • Kobayashi, S., & Okada, M. 1989. Restoration of pole-cell-forming ability to uv-irradiated Drosophila embryos by injection of mitochondrial 1 rRNA. Development 107, 733742.
  • Kobayashi, S., Amikura, R., & Okada, M. 1994. Localization of mitochondrial large rRNA in germinal granules and the consequent segregation of germ line. Int. J. Dev. Biol. 38, 193199.
  • Komiya, T., Itoh, K., Ikenishi, K., & Furusawa, M. 1994. Isolation and characterization of a novel gene of the DEAD box protein family which is specifically expressed in germ cells of Xenopus laevis. Dev. Biol. 162, 354363.
  • Kotani, M., Ikenishi, K., & Tanabe, K. 1973. Cortical granules remaining after fertilization in Xenopus laevis. Dev. Biol. 30, 228232.
  • Lasko, P. F., & Ashburner, M. 1988. The product of the Drosophila gene vasa is very similar to eukaryotic initiation factor-4A. Nature 335, 611617.
  • Lehmann, R., & Nüsslein-Volhard, C. 1986. Abdominal segmentation, pole cell formation, and embryonic polarity require the localized activity of oskar a maternal gene in Drosophila. Cell 47, 141152.
  • Lehmann, R., & Rongo, C. 1993. Germ plasm formation and germ cell determination. Semin. Dev. Biol. 4, 149159.
  • Linder, P., Lasko, P., Leroy P., et al. 1989. Birth of the D-E-A-D box. Nature 337, 121122.
  • Lipshitz, H. D. 1991. Axis specification in the Drosophila embryo. Curr. Opin. Cell Biol. 3, 966975.
  • Mahowald, A. P. 1962. Fine structure of pole cells and polar granules in Drosophila melanogaster. J. Exp. Zool. 151, 201216.
  • Mahowald, A. P. 1968. Polar granules of Drosophila. II. Ultrastructural changes during embryogenesis. J. Exp. Zool. 167, 237262.
  • Mahowald, A. P. 1971. Polar granules of Drosophila. III. The continuity of polar granules during the life cycle of Drosophila. J. Exp. Zool. 176, 329344.
  • Manseau, L., & Schüpbach, T. 1989. cappuccino and spire: Two unique maternal-effect loci required for both the anterioposterior and dorsoventral patterns of the Drosophila embryo. Genes Dev. 3, 14371452.
  • Nakazato, S., & Ikenishi, K. 1989. Monoclonal antibody production against a subcellular fraction of vegetal pole cytoplasm containing the germ plasm of Xenopus 2-cell eggs. Cell. Differ. Dev. 27, 163174.
  • Nieuwkoop, P. D., & Faber, J. 1967. Normal Table of Xenopus laevis (Daud), 2nd edn. North-Holland, Amsterdam .
  • Schüpbach, T., & Wieschaus, E. 1986. Maternal-effect mutations altering the antero-posterior pattern of the Drosophila embryos. Roux's Arch. Dev. Biol. 195, 302317.
  • Tanaka, T. S., Tatsuta, T., & Ikenishi, K. 1995. Characterization and localization of tropomyosin proteins in Xenopus embryos with specific antibodies. Develop. Growth Differ. 37, 111122.
  • Wassarman, D. A., & Steitz, J. A. 1991. Alive with DEAD proteins. Nature 349, 463464.