SEARCH

SEARCH BY CITATION

References

  • Agarwala, S., Sanders, T. A., Ragsdale, C. W. 2001. Sonic hedgehog control of size and shape in midbrain pattern formation. Science 291, 21472150.DOI: 10.1126/science.1058624
  • Agius, E., Oelgeschläger, M., Wessely, O., Kemp, C., DeRobertis, E. M. 2000. Endodermal Nodal-related signals and mesoderm induction in Xenopus. Development 127, 11731183.
  • Albano, R. M., Groome, N., Smith, J. C. 1993. Activins are expressed in preimplantation mouse embryos and in ES and EC cells and are regulated on their differentiation. Development 117, 711723.
  • Alijianian, M. K., Striessning, W., Catterall, W. A. 1991. Phosphorylation of an α1-like subunit of an ϕ-conotoxin sensitive brain calcium channel by cAMP-dependent protein kinase and protein kinase C. J. Biol. Chem. 266, 20 19220 197.
  • Altura, B. M., Altura, B. T., Carella, A., Turlapaty, P. D. M. V. 1980. Adverse effects of artificial buffers on contractile responses of arterial and venous smooth muscle. Br. J. Pharmacol. 69, 207214.
  • Ancel, P. & Vintemberger, P. 1948. Recherches sur le déterminisme de la symétrie bilaterale dans l’oeuf des amphibiens. Bull. Biol. France et Belg.31 (Suppl.), 1–182.
  • Andrews, P. W., Banting, G., Damjanov, I., Arnaud, D., Avner, P. 1984. Three monoclonal antibodies defining distinct differentiation antigens associated with different high molecular weight polypeptides on the surface of embryonal carcinoma cells. Hybridoma 3, 347361.
  • Ariizumi, T. & Asashima, M. 1995. Head and trunk-tail organizing effects of the gastrula ectoderm of Cynops pyrrhogaster after treatment with activin A. Roux’s Arch. Dev. Biol. 204, 427435.
  • Ariizumi, T., Komazaki, S., Asashima, M., Malacinski, G. M. 1996. Activin treated urodele ectoderm: A model experimental system for cardiogenesis. Int. J. Dev. Biol. 40, 715718.
  • Ariizumi, T., Sawamura, K.-I., Uchiyama, H., Asashima, M. 1991. Dose and time-dependent mesoderm induction and outgrowth formation by activin A in Xenopus laevis. Int. J. Dev. Biol. 35, 407414.
  • Asahi, K.-I., Born, J., Tiedemann, H., Tiedemann, H. 1979. Formation of mesodermal pattern by secondary inducing interactions. Roux’s Arch. Dev. Biol. 187, 231244.
  • Asashima, M. 1994. Mesoderm induction during early amphibian development. Develop. Growth Differ. 36, 343355.
  • Asashima, M., Ariizumi, T., Malacinski, G. M. 2000. In vitro control of organogenesis and body patterning by activin during early amphibian development. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 126, 169178.
  • Asashima, M., Davids, M., Tiedemann, H. et al. 1990b. The vegetalizing factor belongs to a family of mesoderm-inducing proteins related to erythroid differentiation factor. Naturwissenschaften 77, 389391.
  • Asashima, M., Nakano, H., Shimada, K., Kinoshita, K., Ishii, K., Shibai, H. U. N. 1990a. Mesodermal induction in early amphibian embryos by activin A (erythroid differentiation factor). Roux’s Arch. Dev. Biol. 198, 330335.
  • Asashima, M., Nakano, H., Uchiyama, H. et al. 1991a. Follistatin inhibits the mesoderm-inducing activity of activin-A and the vegetalizing factor from chicken embryos. Roux’s Arch. Dev. Biol. 200, 47.
  • Asashima, M., Nakano, H., Uchiyama, H. et al. 1991b. Presence of activin (erythroid differentiation factor) in unfertilized eggs and blastulae of Xenopus laevis. Proc. Natl Acad. Sci. USA 88, 65116514.
  • Asashima, M., Shimada, K., Nakano, H., Kinoshita, K., Ueno, N. 1989. Mesodermal induction by activin A (EDF) in Xenopus early embryo. Cell Differ. Dev.27 (Suppl.), 53.
  • Asashima, M., Uchiyama, H., Davids, M. et al. 1991c. The vegetalizing factor from chicken embryos: Its EDF (activin A)-like activity. Mech. Dev. 34, 135141.
  • Attisano, L., Wrana, J. L., Cheifetz, S., Massagué, J. 1992. Novel activin receptors: Distinct genes and alternative mRNA splicing generate a repertoire of serine threonine kinase receptors. Cell 68, 97108.
  • Bain, G., Kitchens, D., Yao, M., Huettner, J. E., Gottlieb, D. I. 1995. Embryonic stem cells express neuronal properties in vitro. Dev. Biol. 168, 342357.DOI: 10.1006/dbio.1995.1085
  • Bearer, F. L. 1994. Distribution of Xrel in the early Xenopus embryo: A cytoplasmic and nuclear gradient. Eur. J. Cell Biol. 63, 255268.
  • Becker, U., Tiedemann, H., Tiedemann, H. 1959. Versuche zur Determination von embryonalem Amphibiengewebe durch Induktionsstoffe in Lösung. Z. Naturfoschg. 14b, 608609.
  • Behrens, J., Von Kries, J. P., Kühl, M. et al. 1996. Functional interaction of β-catenin with the transcription factor LEF-1. Nature 382, 638642.
  • Bellefroid, E. J., Bourguignon, C., Hollemann, T. et al. 1996. X-MyT1, a Xenopus C2HC-type zinc finger protein with a regulatory function in neuronal differentiation. Cell 87, 11911202.
  • Bertrand, N., Médevielle, F., Pituello, F. 2000. FGF signaling controls the timing of Pax 6 activation in the neural tube. Development 127, 48374843.
  • Billett, F. S. & Courtenay, T. H. 1973. A stereoscan study of the origin of ciliated cells in the embryonic epidermis of Ambystoma mexicanum. J. Embryol. Exp. Morphol. 29, 549558.
  • Blumberg, B., Bolado, JrJ., Moreno, T. A., Kintner, C., Evans, R. M., Papalopulu, N. 1997. An essential role for retinoid signaling in anteroposterior neural patterning. Dev. Biol. 124, 373379.
  • Born, J., Davids, M., Tiedemann, Hildegard 1987. Affinity chromatography of embryonic inducing factors on heparin-sepharose. Cell Differ. 21, 131136.
  • Born, J., Hoppe, P., Janeczek, J., Tiedemann, H., Tiedemann, H. 1986. Covalent coupling of neuralizing factors from Xenopus to Sepharose beads: No decrease of inducing activity. Cell Differ. 19, 97101.
  • Born, J., Tiedemann, H., Tiedemann, H. 1969. Activation of a morphogenetic factor by electrophoresis. FEBS Lett. 2, 251254.
  • Born, J., Tiedemann, H., Tiedemann, H. 1972a. Enzymatic degradation of an inhibitor for the vegetalizing factor. J. Embryol. Exp. Morphol. 28, 7786.
  • Born, J., Tiedemann, H., Tiedemann, H. 1972b. The mechanism of embryonic induction: Isolation of an inhibitor for the vegetalizing factor. Biochim. Biophys. Acta 279, 175183.
  • Bouwmeester, T., Kim, S. H., Sasai, Y., Lu, B., DeRobertis, E. M. 1996. Cerberus is a head-inducing secreted factor expressed in the anterior endoderm of Spemann’s organizer. Nature 382, 595601.
  • Boveri, T. 1901. Über die Polarität des Seeigeleies. Verh. D. phys. med. Ges. Würzburg, N. F., 34, 145176.
  • Briscoe, J., Pierani, A., Jessell, T. M., Ericson, J. 2000. A homeodomain protein code specifies progenitor cell identity and neuronal fate in the ventral neural tube. Cell 101, 435445.
  • Britsch, S., Goerich, D. E., Riethmacher, D. et al. 2001. The transcription factor Sox10 is a key regulator of peripheral glial development. Genes Dev. 15, 6678.
  • Brüstle, O., Jones, K. N., Learish, R. D. et al. 1999. Embryonic stem cell derived glial precursors: A source of myelinating transplants. Science 285, 754756.DOI: 10.1126/science.285.5428.754
  • Brüstle, O., Spiro, A. C., Karram, K., Choudhary, K., Okabe, S., McKay, R. D. 1997. In vitro-generated neural precursors participate in mammalian brain development. Proc. Natl Acad. Sci USA 94, 14 80914 814.
  • Brüstle, O. & Wiestler, O. D. 2000. Zellersatz aus embryonalen Stammzellen. Dt. Ärzteblatt 97, A1666–A1673.
  • Carnac, G., Kodjabachian, L., Gurdon, J. B., Lemaire, P. 1996. The homeobox gene Siamois is a target of the Wnt dorsalisation pathway and triggers organiser activity in the absence of mesoderm. Development 122, 30553065.
  • Chan, T. C., Ariizumi, T., Asashima, M. 1999. A model system for organ engineering: Transplantation of in vitro induced embryonic kidney. Naturwissenschaften 86, 224227.DOI: 10.1007/s001140050602
  • Chang, C., Wilson, P. A., Mathews, L. S., Hemmati-Brivanlou, A. 1997. A Xenopus type 1 activin receptor mediates mesodermal, but not neural specification during embryogenesis. Development 124, 827837.
  • Chen, X., Rubock, M. J., Whitman, M. 1996. A transcriptional partner for MAD proteins in TGF-β signaling. Nature 383, 691696.
  • Chertov, O. Y., Krasnosel'Skii, A. L., Bogdanov, M. E., Hoperskaya, O. A. 1990. Mesoderm-inducing factor from bovine amniotic fluid: Purification and N-terminal amino acid sequence determination. Biomed. Sci. 1, 499506.
  • Chiang, C., Litingtung, Y., Lee, E. et al. 1996. Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature 383, 407413.
  • Christen, B. & Slack, J. M. W. 1999. Spatial response to fibroblast growth factor signalling in Xenopus embryos. Development 126, 119125.
  • Christian, J. L., McMahon, J. A., McMahon, A. P., Moon, R. T. 1991. Xwnt-8, a Xenopus Wnt-1/int-1 related gene responsive to mesoderm inducing growth factor, may play a role in ventral mesodermal patterning during embryogenesis. Development 111, 10451055.
  • Christian, J. L. & Moon, R. T. 1993. Interactions between Xwnt-8 and Spemann organizer signaling pathways generate dorsoventral pattern in the embryonic mesoderm of Xenopus. Genes Dev. 7, 1328.
  • Clement, J. H., Fettes, P., Knöchel, S., Lef, J., Knöchel, W. 1995. Bone morphogenetic protein 2 in the early development of Xenopus laevis. Mech. Dev. 52, 357370.
  • Clements, D., Friday, R. V., Woodland, H. R. 1999. Mode of action of VegT in mesoderm and endoderm formation. Development 126, 49034911.
  • Cochard, P., Soula, C., Giess, M.-C., Trousse, F., Foulquier, F., Duprat, J.-M. 1995. Determination of glial lineages during early central nervous system development. In Organisation of the Early Vertebrate Embryo (Ed. N. Zagris), pp. 1–39. Plenum Press, New York.
  • Cornell, R. A. & Kimelman, D. 1994. Activin-mediated mesoderm induction requires FGF. Development 120, 453462.
  • Coulon, F. L., Lyons, K. M., Takaesu, N., Barth, K. S., Kispert, A., Hermann, B., Robertson, E. J. 1994. A primary requirement for nodal in the formation and maintenance of the presumptive streak in the mouse. Development 120, 19191928.
  • Crease, D. J., Dyson, S., Gurdon, J. B. 1998. Cooperation between the activin and Wnt pathways in the spatial control of organizer gene expression. Proc. Natl Acad. Sci. USA 95, 43984403.
  • Crossley, P. H., Martinez, S., Martin, G. R. 1996. Midbrain development induced by FGF8 in the chick embryo. Nature 380, 6668.
  • Crox, W. G. & Hemmati-Brivanlou, A. 1995. Caudallization of neural-fate by tissue recombination and by FGF. Development 121, 43494358.
  • Dale, L., Howes, G., Prize, B. M. J., Smith, J. C. 1992. Bone morphogenetic protein 4: A ventralizing factor in Xenopus development. Development 115, 573585.
  • Dale, L. & Slack, J. M. W. 1987. Fate map for the 32-cell stage of Xenopus laevis. Development 99, 527551.
  • Daopin, S., Piez, K. H., Ogawa, Y., Davies, D. R. 1992. Crystal structure of transforming growth fachtor β2: An unusual fold for the superfamiliy. Science 257, 369372.
  • Davids, M. 1988. Protein kinases in amphibian ectoderm induced for neural differentiation. Roux’s Arch. Dev. Biol. 197, 339344.
  • Davids, M., Loppnow-Blinde, B., Tiedemann, H., Tiedemann, H. 1987. Neural differentiation of amphibian gastrula ectoderm exposed to phorbol ester. Roux’s Arch. Dev. Biol. 196, 137140.
  • Ding, X-Y., McKeehan, W. L., Xu, J., Grunz, H. 1992. Spatial and temporal localization of FGF receptors in Xenopus laevis. Roux’s Arch. Dev. Biol. 201, 334339.
  • Dirksen, M. L. & Jamrich, M. 1992. A novel, Activin-inducible, blastopore lip-specific gene of Xenopus laevis contains a fork head DNA-binding domain. Genes Dev. 6, 599608.
  • Dohrmann, C. E., Hemmati-Brivanlou, A., Thomsen, G. H., Fields, A., Woolf, T. M., Melton, D. A. 1993. Expression of activin mRNA during early development in Xenopus laevis. Dev. Biol. 157, 474483.DOI: 10.1006/dbio.1993.1150
  • Dohrmann, C. E., Kessler, D. S., Melton, D. A. 1996. Induction of axial mesoderm by zDVR-1, the zebrafish orthologue of Xenopus Vg1. Dev. Biol. 175, 108117.DOI: 10.1006/dbio.1996.0099
  • Doniach, T. 1995. Basic FGF as an inducer of anteroposterior neural pattern. Cell 83, 10671070.
  • Dosch, R., Gawantka, V., Delius, H., Blumenstock, C., Niehrs, C. 1997. Bmp-4 acts as a morphogen in dorsoventral mesoderm patterning in Xenopus. Development 124, 23252334.
  • Driever, W., Solnica-Krezel, L., Abdelilah, S., Meyer, D., Stemple, D. 1997. Genetic analysis of pattern formation in the zebrafish neural plate. Cold Spring Harbor Symp. Quant. Biol. 62, 523534.
  • Duesenbery, P. S. 1998. Stem Cell Biology and Gene Therapy. Wiley-Liss, New York.
  • Duprat, A. M. 1996. What mechanisms drive neural induction and neural determination in urodeles? Int. J. Dev. Biol. 40, 745754.
  • Durhsen, U., Villeval, J. L., Böyd, J., Kannourakis, G., Morstyn, G., Metcalf, D. 1988. Effect of human recombinant human granulocyte colony-stimulating factor on hematopoietic progenitor cells in cancer patients. Blood 72, 20742080.
  • Durston, A. J., Timmermann, J. P. M., Hage, W. J. et al. 1989. Retinoic acid causes an anteroposterior transformation in the developing central nervous system. Nature 340, 140144.
  • Dyson, S. & Gurdon, J. B. 1997. Activin signaling has a necessary function in Xenopus early development. Curr. Biol. 7, 8184.
  • Ecochard, V., Cayrol, C., Foulquier, F., Zaraisky, A., Duprat, A. M. 1998. A novel TGF-β-like gene, fugacin, specifically expressed in the Spemann organizer of Xenopus. Dev. Biol. 172, 699703.DOI: 10.1006/dbio.1995.8052
  • Eguchi, G. & Okada, T. S. 1973. Differentiation of lens tissue from the progeny of chick retinal pigment cells cultured in vitro: A demonstration of a switch of cell types in clonal cell culture. Proc. Natl Acad. Sci. USA 70, 14951499.
  • Eisaki, A., Kuroda, H., Fukui, A., Asashima, M. 2000. XSIP-1, a member of two-handed zinc finger proteins, induced anterior neural markers in Xenopus laevis animal cap. Biochem. Biophys. Res. Commun. 271, 151157.
  • Ericson, J., Merton, S., Kawakami, A., Roelink, H., Jessell, T. M. 1996. Two critical periods of sonic hedgehog signaling required for the specification of motor neuron identity. Cell 87, 661673.
  • Erlebacher, A., Filvaroff, E. H., Gitelman, S. E., Derynck, R. 1995. Towards a molecular understanding of skeletal development. Cell 80, 371378.
  • Evans, M. J. & Kaufman, M. H. 1981. Establishment in culture of pluripotential cells from mouse embryos. Nature 292, 154156.
  • Fainsod, A., Deissler, K., Yelin, R. et al. 1997. The dorsalizing and neural inducing gene follistatin is an antagonist of BMP-4. Mech. Dev. 63, 3950.
  • Fainsod, A., Steinbeisser, H., DeRobertis, E. M. 1994. On the function of BMP-4 in patterning the marginal zone of the Xenopus embryo. EMBO J. 13, 50155025.
  • Fekany, K., Yamanaka, Y., Leung, T. et al. 1999. The zebrafish bozozok locus encodes Dharma, a homeo-domain protein essential for induction of gastrula organizer and dorso- anterior structures. Development 126, 14271438.
  • Fischbach, G. D. & McKhann, G. M. 2001. Cell therapy for Parkinson’s disease. N. Engl. J. Med. 344, 763765.
  • Freed, C. R., Greene, P. E., Breeze, R. E. et al. 2001. Transplantation of embryonic dopamine neurons for severe Parkinson’s disease. N. Engl. J. Med. 344, 710719.
  • Friedle, H., Rastegar, S., Paul, H., Kaufmann, E., Knöchel, W. 1998. Xvent-1 mediates BMP-4 induced suppression of the dorsal-lip-specific early response gene XFD-1’ in Xenopus embryos. EMBO J. 17, 22982307.
  • Fuchs, E. & Segre, J. A. 2000. Stem cells: A new lease on life. Cell 100, 143155.
  • Fukui, A., Nakamura, T., Uchiyama, H., Sugino, K., Sugino, H., Asashima, M. 1994. Identification of activins A, AB, and B and follistatin proteins in Xenopus embryos. Dev. Biol. 163, 279281.DOI: 10.1006/dbio.1994.1143
  • Fukui, A., Shiuba, R., Asashima, M. 1999. Activin incorporation into vitellogenic oocytes of Xenopus laevis. Cell. Mol. Biol. 45, 545554.
  • Funayama, N., Fagotto, F., McCrea, P., Gumbiner, B. M. 1995. Embryonic axis induction by the armadillo repeat domain of β-catenin: Evidence for intracellular signaling. J. Cell. Biol. 128, 959968.
  • Gallagher, B. C., Hainski, A. M., Moody, S. A. 1991. Autonomous differentiation of dorsal axial structures from an animal cap cleavage stage blastomere in Xenopus. Development 112, 11031114.
  • Gawantka, V., Delius, H., Hirschfeld, K., Blumenstock, C., Niehrs, C. 1995. Antagonizing the Spemann organizer: Role of the homeobox gene Xwent1. EMBO J. 14, 62686279.
  • Gawantka, V., Pellet, N., Delius, H. et al. 1998. Gene expression screening in Xenopus identifies molecular pathways, predicts gene function and provides a global view of embryonic patterning. Mech. Dev. 77, 95141.
  • Ge, W., Gallin, W. J., Strobeck, C., Peter, R. E. 1993. Cloning and sequencing of goldfish activin subunit genes: Strong structural conservation during vertebrate evolution. Biochem. Biophys. Res. Commun. 193, 711717.DOI: 10.1006/bbrc.1993.1683
  • Gehring, W. 1992. The homeobox in perspective. Trends Biochem. Sci. 8, 277280.
  • Geithe, H.-P., Asashima, M., Asahi, K. I., Born, J., Tiedemann, H., Tiedemann, H. 1981. A vegetalizing inducing factor. Isolation and chemical properties. Biochim. Biophys. Acta 676, 350366.
  • Gimlich, R. L. 1986. Acquisition of developmental autonomy in the equatorial region of the Xenopus embryo. Dev. Biol. 115, 340352.
  • Gimlich, R. L. & Gerhart, J. C. 1984. Early cellular interactions promote embryonic axis formation in Xenopus laevis. Dev. Biol. 104, 117130.
  • Gittes, G. K. & Rutter, W. J. 1992. Onset of cell-specific gene expression in the developing mouse pancreas. Proc. Natl Acad. Sci USA 89, 11281132.
  • Glinka, A., Wu, W., Delius, H., Monaghan, A. P., Blumenstock, C., Niehrs, C. 1998. Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction. Nature 391, 357362.DOI: 10.1038/34848
  • Glinka, A., Wu, W., Onichtchouk, D., Blumenstock, C., Niehrs, C. 1997. Head induction by simultaneous repression of Bmp and Wnt signalling in Xenopus. Nature 389, 517519.DOI: 10.1038/39092
  • Goldwasser, E. 1967. Erythropoietin induction of red cell differentiation. In Experimental Biology and Medicine 1 (Eds E. Hagen, W. Wechsler & F. Zilliken), pp. 234–243. S. Karger, Basel.
  • Goodell, M. A., Brose, K., Paradis, G., Linner, A. S., Mulligan, R. C. 1996. Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J. Exp. Med. 183, 17971806.
  • Goulding, M. D., Lumsden, A., Gruss, P. 1993. Signals from the notochord and floor plate regulate the region-specific expression of 2 Pax genes in the developing spinal cord. Development 117, 10011016.
  • Gradl, D., Kühl, M., Wedlich, D. 1999a. Keeping a close eye on Wnt-1/wg signaling in Xenopus. Mech. Dev. 86, 315.
  • Gradl, D., Kühl, M., Wedlich, D. 1999b. The Wnt/wg signal transducer β-catenin controls fibronectin expression. Mol. Cell. Biol. 19, 55765587.
  • Graff, J. M., Thies, R. S., Song, J. J., Celeste, A. J., Melton, D. A. 1994. Studies with a Xenopus BMP receptor suggest that ventral mesoderm-inducing signals override dorsal signals in vivo. Cell 79, 169179.
  • Grapin-Botton, A., Majithia, A. R., Melton, D. A. 2001. Key events of pancreas formation are triggered in gut endoderm by ectopic expression of pancreatic regulatory genes. Genes Dev. 15, 444452.
  • Greene, P. E., Fahn, S., Tsai, W.-Y. et al. 1999. Severe spontaneous dyskinesias: A disabling complication of embryonic dopaminergic tissue implants in a subset of transplanted patients with advanced Parkinson’s disease. Mov. Disord.14 (Suppl.), 904.
  • Grosschedl, R., Giese, K., Pagel, J. 1994. HMG domain proteins: Architectural elements in the assembly of nucleoprotein structures. Trends Genet. 10, 94100.
  • Grunz, H. 1973. The ultrastructure of amphibian ectoderm treated with an inductor or actinomycin D. Roux’s Arch. Dev. Biol. 173, 283293.
  • Grunz, H. 1983. Change in the differentiation pattern of Xenopus laevis ectoderm by variation of the incubation time and concentration of vegetalizing factor. Roux’s Arch. Dev. Biol. 192, 130137.
  • Grunz, H. 1994. The four animal blastomers of the eight-cell stage of Xenopus laevis are intrinsically capable of differentiating into dorsal mesodermal derivatives. Int. J. Dev. Biol. 38, 6976.
  • Grunz, H. 1996. Factors responsible for the establishment of the body plan in amphibian embryos. Int. J. Dev. Biol. 40, 279289.
  • Grunz, H. 1997. Neural Induction in amphibians. Curr. Top. Dev. Biol. 35, 191228.
  • Grunz, H. 1999a. Amphibian embryos as a model system for organ engineering: In vitro induction and rescue of the heart anlage. Int. J. Dev. Biol. 43, 361364.
  • Grunz, H. 1999b. Gene expression and pattern formation during early embryonic development in amphibians. J. Biosci . 24, 515528.
  • Grunz, H. 2001. Developmental biology of amphibians after Hans Spemann in Germany. Int. J. Dev. Biol. 45, 3950.
  • Grunz, H., McKeehan, W. L., Knöchel, W., Born, J., Tiedemann, H., Tiedemann, H. 1988. Induction of mesodermal tissues by acidic and basic heparin binding growth factors. Cell Differ. 22, 183190.
  • Grunz, H., Multier-Lajous, A. M., Herbst, R., Arkenberg, G. 1975. The differentiation of isolated amphibian ectoderm with or without treatment of an inductor. A scanning electron microscope study. Roux’s Arch. Dev. Biol. 178, 277284.
  • Grunz, H. & Tacke, L. 1989. Neural differentiation of Xenopus laevis ectoderm takes place after disaggregation and delayed reaggregation without inducer. Cell Differ. Dev. 28, 211218.
  • Grunz, H. & Tacke, L. 1990. Extracellular matrix components prevent neural differentiation of disaggregated Xenopus ectoderm cells. Cell Differ. Dev. 32, 117124.
  • Gruss, P. & Walther, C. 1992. Pax in development. Cell 69, 719722.
  • Haegel, H., Larue, L., Ohsugi, M., Fedorov, L., Herrenknecht, K., Kemler, R. 1995. Lack of β-catenin affects mouse development at gastrulation. Development 121, 35293537.
  • Hata, A., Seoane, J., Lagna, G., Montalvo, E., Hemmati-Brivanlou, A., Massagué, J. 2000. OAZ uses distinct DNA- and protein-binding zinc fingers in separate BMP-Smad and Olf signaling pathways. Cell 100, 22940.
  • Hatta, K., Püschel, A. W., Kimmel, C. B. 1994. Midline signaling in the primordium of the zebrafish anterior central nervous system. Proc. Natl Acad. Sci. USA 91, 20612065.
  • Hayata, T., Uochi, T., Asashima, M. 1998. Molecular cloning of XNLRR-1, a Xenopus homolog of mouse neuronal leucine-rich repeat protein expressed in the developing Xenopus nervous system. Gene 221, 159166.DOI: 10.1016/s0378-1119(98)00414-4
  • He, X., Saint-Jeannet, J.-P., Woodgett, J. R., Varmus, H. E., Dawid, I. B. 1995. Glycogen synthase kinase-3 and dorsoventral patterning in Xenopus embryos. Nature 374, 617622.
  • Heasman, J., Crawford, A., Goldstone, K. et al. 1994. Overexpression of cadherins and underexpression of β-catenin inhibit dorsal mesoderm induction in early Xenopus embryos. Cell 79, 791803.
  • Heasman, J., Wylie, C., Hausen, P., Smith, J. C. 1984. Fates and states of determination of single vegetal pole blastomeres of Xenopus laevis. Cell 37, 185194.
  • Hebrok, M., Kim, S. K., Melton, D. A. 1998. Notochord repression of endodermal Sonic hedgehog permits pancreas development. Genes Dev. 12, 17051713.
  • Heldin, C. H., Miyazono, K., Ten Dijke, P. 1997. TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature 390, 465471.DOI: 10.1038/37284
  • Henningfeld, K. A., Rastegar, S., Adler, G., Knöchel, W. 2000. Smad1 and Smad4 are components of the bone morphogenetic protein-4 (BMP-4)-induced transcription complex of the Xvent-2B promoter. J. Biol. Chem. 275, 21 82721 835.
  • Henry, G. L., Brivanlou, I. H., Kessler, D. S., Hemmati-Brivanlou, A., Melton, D. A. 1996. TGF-beta signals and a pattern in Xenopus laevis endodermal development. Development 122, 10071015.
  • Henry, G. L. & Melton, D. A. 1998. Mixer, a homeobox gene required for endoderm development. Science 281, 9196.
  • Holtfreter, J. 1933a. Nachweis der Induktionsfähigkeit abgetöteter Keimteile. Isolations- und Transplantationsversuche. Wilhelm Roux’s Arch. Entw. Mech. Org. 128, 584633.
  • Holtfreter, J. 1933b. Eigenschaften und Verbreitung induzierender Stoffe. Naturwissenschaften 21, 766770.
  • Holtfreter, J. 1934. Der Einfluß thermischer, mechanischer und chemischer Eingriffe in die Induktionsfähigkeit von Triturus Keimteilen. Wilhelm Roux’s Arch. Entw. Mech. Org. 132, 225306.
  • Holtfreter, J. 1939. Studien zur Entwicklung der Gestaltungsfaktoren in der Organentwicklung der Amphibien II. Wilhelm Roux’s Arch. Entw. Mech. Org. 129, 227273.
  • Holtfreter, J. 1944. Neural differentiation of ectoderm through exposure to saline solution. J. Exp. Zool. 95, 307340.
  • Holtfreter, J. & Hamburger, V. 1955. Amphibians. In Analysis of Development (Eds. B. H. Willier, P. A. Weiss & V. Hamburger), pp. 230–296. W. B. Saunders, Philadelphia.
  • Hoppler, S., Brown, J. D., Moon, R. T. 1996. Expression of a dominant-negative Wnt blocks induction of MyoD in Xenopus embryos. Genes Dev. 10, 28052817.
  • Hoppler, S. & Moon, R. T. 1998. BMP-2/-4 and Wnt-8 cooperatively pattern the Xenopus mesoderm. Mech. Dev. 71, 119129.
  • Howell, M. & Hill, C. S. 1997. Xsmad2 directly activates the activin-inducible, dorsal mesoderm gene XFKH1 in Xenopus embryos. EMBO J. 16, 74117421.
  • Hsieh, J.-C., Kodjabachian, L., Rebbert, M. L. et al. 1999. A new secreted protein that binds to Wnt proteins and inhibits their activities. Nature 398, 431436.DOI: 10.1038/18899
  • Hsu, S. C., Galceran, J., Grosschedl, R. 1998. Modulation of transcriptional regulation by LEF-1 in response to wnt-1 signaling and association with β-catenin. Mol. Cell. Biol. 18, 48074818.
  • Hu, M., Krause, D., Greaves, M. et al. 1997. Multilineage gene expression preceedes commitment. Genes Dev. 11, 774785.
  • Huang, H. C., Murtaugh, L. C., Vize, P. D., Whitman, M. 1995. Identification of a potential regulator of early transcriptional responses to mesoderm inducers in the frog embryo. EMBO J. 14, 5965–5973.
  • Hudson, C., Clements, D., Friday, R. V., Stott, D., Woodland, H. R. 1997. Xsox17α and -β mediate endoderm formation in Xenopus. Cell 91, 397405.
  • Huxley, A. 1932. Brave New World. Harper Collins, New York.
  • Hyde, C. E. & Old, R. W. 2000. Regulation of the early expression of the Xenopus nodal-related 1 gene, Xnr1. Development 127, 12211229.
  • Isaacs, H. V., Pownall, M. E., Slack, J. M. W. 1994. eFGF regulates Xbra expression during Xenopus gastrulation. EMBO J. 13, 44694481.
  • Isaacs, H. V., Tannahill, D., Slack, J. M. W. 1992. Expression of a novel FGF in the Xenopus embryo – a new candidate inducing factor for mesoderm formation and anteroposterior specification. Development 114, 711720.
  • Itoh, K. & Sokol, S. Y. 1994. Heparansulfate proteoglycans are required for mesoderm formation in Xenopus embryos. Development 120, 27032711.
  • Itskovitz-Eldor, J., Schuldiner, M., Karsenti, D. et al. 2000. Differentiation of human embryonic stem cells into embryoid bodies comprising the three embryonic germ layers. Mol. Med. 6, 8895.
  • Janeczek, J., Born, J., Hoppe, P., Tiedemann, Hildegard 1992. Partial characterization of neural-inducing factors from Xenopus-gastrulae – Evidence for a larger protein complex containing the factor. Roux‘s Arch. Dev. Biol. 201, 3035.
  • Janeczek, J., John, M., Born, J., Tiedemann, H., Tiedemann, H. 1984. Inducing activity of subcellular fractions from amphibian embryos. Roux‘s Arch. Dev. Biol. 193, 112.
  • Johansson, B. M. & Wiles, M. V. 1995. Evidence for involvement of activin A and bone morphogenetic protein 4 in mammalian mesoderm and hematopoietic development. Mol. Cell. Biol. 15, 141151.
  • Johansson, C. B., Momma, S., Clarke, D. L., Risling, M., Lendahl, U., Friesen, J. 1999. Identification of a neural stem cell in the adult mammalian central nervous system. Cell 96, 2534.
  • John, M., Born, J., Tiedemann, H., Tiedemann, H. 1984. Activation of a neuralizing factor in amphibian ectoderm. Roux’s Arch. Dev. Biol. 193, 1318.
  • John, M., Janeczek, J., Born, J., Hoppe, P., Tiedemann, H., Tiedemann, H. 1983. Neural induction in amphibians. Transmission of a neuralizing factor. Roux’s Arch. Dev. Biol. 192, 4547.
  • Jones, C. M., Kuehn, M. R., Hogan, B. L. M., Smith, J. C., Wright, C. V. E. 1995. Nodal-related signals induce axial mesoderm and dorsalize mesoderm during gastrulation. Development 121, 36513662.
  • Jones, C. M., Lyons, K. M., Lapan, P. M., Wright, C. V. E., Hogan, B. L. M. 1992. DVR-4 (bone morphogenetic protein-4) as a postero-ventralizing factor in Xenopus mesoderm induction. Development 115, 639647.
  • Jones, E. A., Abel, M. H., Woodland, H. R. 1993. The possible role of mesodermal growth factors in the formation of endoderm in Xenopus laevis. Roux‘s Arch. Dev. Biol. 202, 233239.
  • Jones, E. A. & Woodland, H. R. 1987. The development of animal cap cells in Xenopus: A measure of the start of animal cap competence to form mesoderm. Development 101, 557563.
  • Joseph, E. M. & Melton, D. A. 1997. Xnr4: A Xenopus nodal-related gene expressed in the Spemann organizer. Dev. Biol. 184, 367372.DOI: 10.1006/dbio.1997.8510
  • Karasaki, S. 1963. Studies on amphibian yolk. 5. Electron microscopic observations on the utilization of yolk platelets during embryogenesis. J. Ultrastruct. Res. 9, 225247.
  • Kaufmann, E. & Knöchel, W. 1996. Five years on the wings of fork-head. Mech. Dev. 57, 320.
  • Kaufmann, E., Paul, H., Friedle, H. et al. 1996. Antagonistic actions of activin A and BMP-2/4 control dorsal lip specific activation of the early response gene XFD-1’ in Xenopus laevis embryos. EMBO J. 15, 67396749.
  • Kawahara, A., Wilm, T., Solnica-Krezel, L., Dawid, I. B. 2000a. Functional interaction of vega 2 and goosecoid homeobox genes in zebrafish. Genesis 28, 5867.DOI: 10.1002/1526-968x(200010)28:2<58::aid-gene30>3.3.co;2-e
  • Kawahara, A., Wilm, T., Solnica-Krezel, L., Dawid, I. B. 2000b. Antagonistic role of vega 1 and bozozok/dharma homeobox genes in organizer formation. Proc. Natl Acad. Sci. USA 97, 12 12112 126.
  • Keller, G. M. 1995. In vitro differentiation of embryonic stem cells. Curr. Opin. Cell Biol. 7, 862869.
  • Kim, C. H., Oda, T., Itoh, M. et al. 2000. Repressor activity of headless/Tcf3 is essential for vertebrate head formation. Nature 407, 913916.DOI: 10.1038/35038097
  • Kim, S. K., Hebrok, M., Melton, D. A. 1997. Notochord to endoderm signaling is required for pancreas development. Development 124, 42434252.
  • Kimelman, D., Abraham, J. A., Haaparanta, T., Palsi, T., Kirschner, M. W. 1988. The presence of fibroblast growth factors in the frog egg. Its role as a natural mesoderm inducer. Science 242, 10531056.
  • Kinoshita, K., Bessho, T., Asashima, M. 1993. Competence prepattern in the animal hemisphere of the 8-cell-stage Xenopus embryo. Dev. Biol. 160, 276284.DOI: 10.1006/dbio.1993.1305
  • Klug, M. G., Soonpaa, M. H., Field, J. 1995. DNA synthesis and multinucleation in embryonic stem cell-derived cardiomyocytes. Am. J. Physiol. 269, H1913–H1921.
  • Klug, M. G., Soonpaa, M. H., Koh, G. Y., Field, L. J. 1996. Genetically selected cardionmyozytes from differentiating embryonic stem cells from stable intracardiac grafts. J. Clin. Invest. 98, 216224.
  • Knöchel, S., Lef, J., Clement, J. et al. 1992. Activin A induced expression of a fork-head related gene in posterior chordamesoderm (notochord) of Xenopus laevis embryos. Mech. Dev. 38, 157165.
  • Knöchel, W., Grunz, H., Loppnow-Blinde, B., Tiedemann, H., Tiedemann, H. 1989a. Mesoderm induction and blood island formation by angiogenic growth factors and embryonic inducing factors. Blut 59, 207213.
  • Knöchel, W., McKeehan, W. L., Tiedemann, H. et al. 1987. Mesoderm-inducing factors. Their possible relationship to heparin-binding growth factors and transforming growth factor β. Naturwissenschaften 74, 604606.
  • Knöchel, W., Tiedemann, H., Tiedemann, H. 1989b. Mesoderm induction by transforming growth factor β: Medium conditioned by TGFβ treated ectoderm enhances the inducing activity. Naturwissenschaften 76, 270272.
  • Kocher-Becker, U., Tiedemann, H., Tiedemann, H. 1965. Exovagination of Newt endoderm: Cell affinities altered by the mesodermal inducing factor. Science 147, 167169.
  • Kocher-Becker, U. & Tiedemann, H. 1971. Induction of mesodermal and endodermal structures and primordial germ cells in Triturus ectoderm by a vegetalizing factor from chick embryos. Nature 233, 6566.
  • Kofron, M., Demel, T., Xanthos, J. et al. 1999. Mesoderm induction in Xenopus is a zygotic event regulated by maternal VegT via TGFβ growth factors. Development 126, 57595770.
  • Korinek, V., Barker, N., Moerer, P. et al. 1999. Depletion of epithelial stem cell compartments in the small intestine lacking Tcf 4. Nat. Genet. 19, 379383.DOI: 10.1038/1270
  • Köster, M., Dillinger, K., Knöchel, W. 2000. Activin A signaling directly activates Xenopus winged helix factors XFD-4/XFD-4’, the orthologues to mammalian MFH-1. Dev. Genes Evol. 210, 320324.
  • Köster, M., Plessow, S., Clement, J. H., Lorenz, A., Knöchel, W. 1991. Bone morphogenetic protein 4 (BMP-4), a member of the TGF-β family in early embryos of Xenopus laevis: Analysis of mesoderm inducing activity. Mech. Dev. 44, 191200.
  • Krumlauf, R. 1994. Hox genes in vertebrate development. Cell 78, 191201.
  • Kuroda, H., Hayata, T., Eisaki, A., Asashima, M. 2000. Cloning a novel developmental regulating gene, Xotx5: Its potential role in anterior formation in Xenopus laevis. Develop. Growth Differ. 42, 8793.
  • Kuroda, H., Sakumoto, H., Kinoshita, K., Asashima, M. 1999. Changes in the adhesive properties of dissociated and reaggregated Xenopus laevis embryo cells. Develop. Growth Differ. 41, 283291.
  • Küswetter, W. & Teschner, M. 1999. Gentechnisch induziertes Knochenwachstum. Deutsches Ärzteblatt 96, A1891–A1896.
  • Ladher, R., Mohun, T. J., Smith, J. C., Snape, A. M. 1996. Xom: A Xenopus homeobox gene that mediates the early effect of BMP-4. Development 122, 23852394.
  • Lamb, T. M. & Harland, R. M. 1995. Fibrolast growth factor is a direct neural inducer which combined with noggin generats anterior-posterior neural pattern. Development 121, 3627 3636.
  • Larabell, C. A., Rowning, B. A., Wells, J., Wu, M., Gerhart, J. C. 1996. Confocal microscopy analysis of living Xenopus eggs and the mechanism of cortical rotation. Development 122, 12811289.
  • Larabell, C. A., Torres, M., Rowning, B. A. et al. 1997. Establishment of the dorso-ventral axis in Xenopus embryos is presaged by early asymmetries in β-catenin that are modulated by the Wnt signaling pathway. J. Cell Biol. 136, 11231136.
  • Latinkic, B. V. & Smith, J. C. 1999. Goosecoid and Mix 1 repress Brachyury expression and are required for head formation in Xenopus. Development 126, 17691779.
  • Laurent, M. N., Blitz, I. L., Hashimoto, C., Rothbächer, N., Cho, K. W.-Y. 1997. The Xenopus homeobox gene twin mediates Wnt induction of goosecoid in establishment of Spemann’s organizer. Development 124, 49054916.
  • Leclerc, C., Duprat, A. M., Moreau, M. 1995. In vivo labelling of L-type Ca2+ channels by fluorescent dihydropyridine: Correlation between ontogenesis of the channels and the acquisition of neural competence in ectoderm cells from Pleurodeles waltl embryos. Cell Calcium 17, 216224.
  • Lef, J., Clement, J. H., Oschwald, R., Köster, M., Knöchel, W. 1994. Spatial and temporal transcription patterns of the forkhead related XFD-2/ 2’ genes in Xenopus laevis embryos. Mech. Dev. 45, 117126.
  • Leyns, L., Bouwmeester, T., Kim, S. H., Piccolo, S., DeRobertis, E. M. 1997. Frzb-1 is a secreted antagonist of Wnt signaling expressed in the Spemann organizer. Cell 88, 747756.
  • Li, S. H., Mao, Z. R., Yan, S. Y., Grunz, H. 1996. Isolated dorsal animal blastomeres of Xenopus laevis are capable to form mesodermal derivatives, while the ventral animal blastomeres differentiate into ciliated epidermis only. Zool. Sci. 13, 125131.
  • Liem, K. F. J., Remml, G., Jessell, T. M. 1997. A role for the roof plate and its resident TGFβ-related proteins in neuronal patterning in the dorsal spinal cord. Cell 91, 127138.DOI: 10.1016/s0092-8674(01)80015-5
  • Liem, K. F. J., Remml, G., Roelink, H., Jessell, T. M. 1995. Dorsal differentiation of neural plate cells induced by BMP-mediated signals from epidermal ectoderm. Cell 82, 969979.
  • Lin, C.-S., Lim, S. K., D'Agnati, V., Constantini, F. 1996. Differential effects of an erythropoietin receptor gene disruption on primitive and definitive erythropoiesis. Genes Dev. 10, 154164.
  • Lopashov, G. V. 1977. Levels in stabilization of cell differentiation and its experimental transformation. Differentiation 9, 131137.
  • Lopashov, G. V., Selter, H., Montenarh, M. et al. 1992. Neural inducing factors in neuroblastoma and retinoblastoma cell lines. Extraction with acid ethanol. Naturwissenschaften 79, 365367.
  • Lopashov, G. V. & Sologub, A. A. 1972. Artificial metaplasia of pigmented epithelium into retina in tadpoles and adult frogs. J Embryol. Exp. Morphol. 28, 52146.
  • López-Casillas, F., Wrana, J. L., Massagué, J. 1993. Betaglycan presents ligand to the TGFβ signaling receptor. Cell 73, 14351444.
  • Lumsden, J. & Krumlauf, R. 1996. Patterning the vertebrate neuraxis. Science 274, 11091115.DOI: 10.1126/science.274.5290.1109
  • Lustig, K. D., Kroll, K. L., Sun, E. E., Kirschner, M. W. 1996b. Expression cloning of a Xenopus T-related gene (Xombi) involved in mesodermal patterning and blastopore lip formation. Development 122, 40014012.
  • Lustig, K. D., Kroll, K., Sun, E., Ramos, R., Elmendorf, H., Kirschner, M. W. 1996a. A Xenopus nodal-related gene that acts in synergy with noggin to induce complete secondary axis and notochord formation. Development 122, 32753282.
  • Maéno, M., Ong, R. C., Xue, Y., Nishimatsu, S., Ueno, N., Kung, H.-F. 1994. Regulation of primary erythropoiesis in the ventral mesoderm of Xenopus gastrula embryo: Evidence for the expression of a stimulatory factor(s) in animal pole tissue. Dev. Biol. 161, 522529.DOI: 10.1006/dbio.1994.1050
  • Mangold, O. 1923. Transplantationsversuche zur Frage der Spezifität und der Bildung der Keimblätter. Wilhelm Roux’s Arch. Entw. Mech. Org. 100, 198301.
  • Mangold, O. 1949. Totale Keimblattchimären bei Triturus. Naturwissenschaften 43, 287289.
  • Mangold, O. 1957. Zur Analyse der Induktionsleistung des Entoderms der Neurula von Urodelen. Naturwissenschaften 44, 289290.
  • Mangold, O. & Spemann, H. 1927. Über die Induktion von Medullarplatte durch Medularplatte im jüngeren Keim, ein Beispiel von homoiogenetischer und asssimilatorischer Induktion. Wilhelm Roux’s Arch. Entw. Mech. Org. 100, 599638.
  • Mansouri, A. & Gruss, P. 1998. Pax3 and Pax7 are expressed in commissural neurons and restrict ventral neuronal identity in the spinal cord. Mech. Dev. 78, 171178.
  • Marchant, L., Linker, C., Mayor, R. 1998. Inhibition of mesoderm formation by follistatin. Dev. Genes Evol. 208, 157160.
  • Maroon, M. J., Di Rocca, G. G., Gardiner, A., Bush, S. M., Lassar, A. B. 1901. Inhibition of Wnt activity induces heart formation from posterior mesoderm. Genes Dev. 15, 316327.
  • Martin, G. R. 1981. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl Acad. Sci. USA 78, 76347638.
  • Massagué, J. 1998. TGF-β signal transduction. Annu. Rev. Biochem. 67, 753791.
  • Matsui, Y., Toksoz, D., Nishikawa, S. et al. 1991. Effect of Steel factor and leukemia inhibitory factor on murine primordial germ cells in culture. Nature 353, 750752.
  • Matzuk, M. M., Kumar, T. R., Vasall, A. et al. 1995. Functional analysis of activins during mammalian development. Nature 374, 354356.
  • Mayr, T., Deutsch, U., Kühl, M. et al. 1997. Fritz: A secreted frizzled-related protein that inhibits Wnt activity. Mech. Dev. 63, 109125.
  • McGrew, L. L., Lai, C.-J., Moon, R. T. 1995. Specification of the anteroposterior neural axis through synergistic interaction of the Wnt signaling cascade with noggin and follistatin. Dev. Biol. 172, 337342.DOI: 10.1006/dbio.1995.0027
  • McKendry, R., Hsu, S. C., Harland, R. M., Grosschedl, R. 1997. LEF-1/TCF proteins mediate wnt-inducible transcription from the Xenopus nodal-related 3 promoter. Dev. Biol. 192, 420431.DOI: 10.1006/dbio.1997.8797
  • McMahon, A. P. & Moon, R. T. 1989. Ectopic expression of the protooncogene int-1 in Xenopus embryos leads to duplication of the embryonic axis. Cell 58, 10751084.
  • Medawar, P. B. 1984. The Limits of Science. Harper & Row, New York.
  • Melby, A. E., Beach, C., Mullins, M., Kimelman, D. 2000. Patterning the early zebrafish by the opposing action of bozozok and vox/vent. Dev. Biol. 224, 275285.DOI: 10.1006/dbio.2000.9780
  • Metcalf, D., Johnson, G. R., Burgess, A. W. 1980. Direct stimulation by purified GM-CSF of the proliferation of multipotential and erythroid precursor cells. Blood 55, 138147.
  • Metz, A., Knöchel, S., Büchler, P., Köster, M., Knöchel, W. 1998. Structural and functional analysis of the BMP-4 promoter in early embryos of Xenopus laevis. Mech. Dev. 74, 2939.
  • Meyer, D. & Birchmeier, C. 1995. Multiple essential functions of neuregulin in development. Nature 378, 386390.
  • Mikhailov, A. T. & Gorgolyuk, N. A. 1989. Embryonic brain derived neuralizing factor. Cell Differ. Dev.27 (Suppl.), 70–80.
  • Minuth, M. & Grunz, H. 1980. The formation of mesodermal derivates after induction with vegetalizing factor depends on secondary cell interactions. Cell Differ. 9, 229238.
  • Mitrani, E., Ziv, T., Thomsen, G., Shimoni, Y., Melton, D. A., Bril, A. 1990. Activin can induce the formation of axial structures and is expressed in the hypoblast of the chick. Cell 63, 495501.
  • Miyanaga, Y., Shiurba, R., Nagata, S., Pfeiffer, C. J., Asashima, M. 1998. Induction of blood cells in Xenopus embryo explants. Dev. Genes Evol. 207, 417426.
  • Moepps, B., Braun, M., Knöpfle, K., Dillinger, K., Knöchel, W., Gierschik, P. 2000. Characterization of a Xenpus laevis CXC chemokine receptor 4: Implications for hematopoietic cell development in the vertebrate embryo. Eur. J. Immunol. 30, 29242933.DOI: 10.1002/1521-4141(200010)30:10<2924::aid-immu2924>3.0.co;2-y
  • Molineux, G., Pojda, Z., Dexter, T. M. 1990a. A comparison of hematopoiesis in normal and splenectomized animals treated with G-CSF. Blood 75, 563573.
  • Molineux, G., Pojda, Z., Lord Hampson, B. I., Dexter T. M. 1990b. Transplantation potential of peripheral blood stem cells induced by granulocyte colony-stimulating factor. Blood 76, 21532158.
  • Monod, J., Changeux, J. P., Jacob, F. 1963. Allosteric proteins and cellular control systems. J. Mol. Biol. 6, 306329.
  • Moreau, M., Leclerc, C., Gualandri-Parisot, L., Duprat, A. M. 1994. Increased internal Ca2+ mediates neural induction in the amphibian embryo. Proc. Natl Acad. Sci. USA 91, 12 63912 643.
  • Moriya, N., Komazaki, S., Asashima, M. 2000a. In vitro organogenesis of pancreas in Xenopus laevis dorsal lips treated with retinoic acid. Develop. Growth Differ. 42, 175185.
  • Moriya, N., Komazaki, S., Takahashi, S., Yokota, C., Asashima, M. 2000b. In vitro pancreas formation from Xenopus ectoderm treated with activin and retinoic acid. Develop. Growth Differ. 42, 593602.
  • Morrison, S. J., White, P. M., Zock, D., Anderson, D. J. 1999. Prospective identification, isolation by flow cytometry, and in vivo self-renewal of multipotent mammalian neural crest stem cells. Cell 96, 737749.
  • Mueller, C. W. & Herrmann, B. G. 1997. Crystallographic structure of the T domain-DNA complex of the brachyury transcription factor. Nature 389, 884888.DOI: 10.1038/39929
  • Mueller, F., Blader, P., Rastegar, S., Fischer, N., Knöchel, W., Strähle, U. 1999. Characterization of zebrafish smad1, smad2 and smad5: The amino-terminus of Smad1 and Smad5 is required for specific function in the embryo. Mech. Dev. 88, 7388.
  • Mueller-Pillasch, F., Pohl, B., Wilda, M. et al. 1999. Expression of the highly conserved RNA binding protein KOC in embryogenesis. Mech. Dev. 88, 9599.
  • Murata M., Eto Y., Shibai H., Sakai M., Muramatsu M. 1988. Erythroid differentiation factor is encoded by the same mRNA as that of the inhibin β A chain. Proc. Natl Acad. Sci. USA 85, 24342438.
  • Nakakura, N., Miura, T., Yamana, K., Ito, A., Shiokawa, K. 1987. Synthesis of heterogeneous mRNA-like RNA and low-molecular-weight RNA before the midblastula transition in embryos of Xenopus laevis. Dev Biol. 123, 421429.
  • Nakamura, O. 1942. Die Entwicklung der hinteren Korperhalfte bei Urodelen. Annot. Zool. Jap. 21, 169236.
  • Nakamura, O. & Kishiyama, K. 1971. Prospective fates of blastomeres at the 32 cell stage of Xenopus laevis embryos. Proc. Jap. Acad. 47, 407412.
  • Nakamura, O. & Takasaki, H. 1970. Further studies on the differentation capacity of the dorsal marginal zone in the morula of Triturus pyrrhogaster. Proc. Jap. Acad. 46, 546551.
  • Nakamura, O., Takasaki, H., Mizohata, T. 1970. Differentiation during cleavage in Xenopus laevis. Acquisition of self differentiation capacity of the dorsal marginal zone. Proc. Jap. Acad. 46, 675700.
  • Nakamura O. & Toivonen, S. 1978. Organizer. Elsevier/North Holland Biomedical Press, Amsterdam.
  • Nakamura, T., Sugino, K., Titani, K., Sugino, H. 1991. Follistatin, an activin-binding protein, associates with heparansulfate chains of proteoglycans on follicular granulosa cells. J. Biol. Chem. 266, 19 43219 437.
  • Newport, J. & Kirschner, M. 1982. A major developmental transition in early Xenopus embryos: I. Characterization and timing of cellular changes at the midblastula stage. Cell 30, 675686.
  • Nichols, J., Zevonik, B., Anastassiadis, K. et al. 1998. Formation of pluripotent stem cells in the mammalian embryo depends on the Pou transcription factor Oct 4. Cell 95, 379391.
  • Niehrs, C. 2001. The Spemann organizer and embryonic head induction. EMBO J. 20, 631637.
  • Niehrs, C., Keller, R., Cho, K. W. Y., DeRobertis, E. M. 1993. The homeobox gene goosecoid controls cell migration in Xenopus embryos. Cell 72, 491503.
  • Nieuwkoop, P. D. 1969. The formation of the mesoderm in urodelean amphibians. I. Induction by the endoderm. Roux’s Arch. Dev. Biol. 162, 341373.
  • Nieuwkoop, P. D. & Faber, J. 1956. Normal Tables of Xenopus laevis (Daudin). North Holland Publishing Company, Amsterdam.
  • Nishita, M., Hashimoto, M. K., Ogata, S. et al. 2000. Interaction between Wnt and TGF-β signaling pathways during formation of Spemann’s organizer. Nature 403, 781785.DOI: 10.1038/35001602
  • Niwa, H., Burdon, T., Chambers, I., Smith, A. 1998. Self-renewal of pluripotent embryonic stem cells via activation of STAT3. Genes Dev. 12, 20482060.
  • Ogi, K. 1967. Determination in the development of the amphibian embryo. Sci. Rep. Tohoku Univ. (Biol.) 33, 239247.
  • Okabe, S., Forsberg-Nilsson, K., Spiro, A. C., Segal, M., McKay, R. D. G. 1996. Development of neuronal precursor cells and functional postmitotic neurons from embryonic stem cells in vitro. Mech. Dev. 59, 89102.
  • Okada, T. S. 1954. Experimental studies on the differentiation of endodermal organs in amphibians. II. Differentiation potencies of the presumptive endoderm in the presence of the mesodermal tissues. Mem. Coll. Sci. Univ. Kyoto Ser. B. 21, 714.
  • Okada, Y. K. & Hama, T. 1943. Examination of regional differences in the inductive activity of the organizer by means of transplantation into ectodermal vesicles. Proc. Imp. Acad. 19, 4953.
  • Onichtchouk, D., Gawantka, V., Dosch, R. et al. 1996. The Xvent-2 homeobox gene is part of the BMP-4 signaling pathway controlling dorsoventral patterning in Xenopus mesoderm. Development 122, 30453053.
  • Oschwald, R., Clement, J. H., Knöchel, W., Grunz, H. 1993. Suramin prevents transcription of dorsal marker genes in Xenopus laevis embryos, isolated dorsal blastopore lips and Activin-A induced animal caps. Mech. Dev. 43, 121133.
  • Otte, P. A., Köster, C. H., Snoek, G. T., Durston, A. J. 1988. Protein kinase C mediates neural induction in Xenopus laevis. Nature 334, 618620.
  • Palmer, T. D., Schwartz, P. H., Taopin, P., Kaspar, B., Stein, S. A., Gage, F. H. 2001. Cell culture. Progenitor cells from human brain after death. Nature 411, 4243.DOI: 10.1038/35075141
  • Panitz, F., Krain, B., Hollemann, T., Nordheim, A., Pieler, T. 1998. The Spemann organizer-expressed zinc finger gene Xegr-1 responds to the MAP kinase/Ets-SRF signal transduction pathway. EMBO J. 17, 44144425.
  • Pannese, M., Cristana, P., Andreazzoli, M. et al. 1995. The Xenopus homologue of Otx2 is a maternal homeobox gene that demarcates and specifies anterior body regions. Development 121, 707720.
  • Peifer, M. & Polakis, P. 2000. Wnt signaling in oncogenesis and embryogenesis – a look outside the nucleus. Science 287, 16061609.DOI: 10.1126/science.287.5458.1606
  • Piccolo, S., Agius, E., Leyns, L. et al. 1999. The head inducer cerberus is a multifunctional antagonist of nodal, BMP and Wnt signals. Nature 397, 707710.DOI: 10.1038/17820
  • Piccolo, S., Agius, E., Lu, B., Goodman, S., Dale, L., DeRobertis, E. M. 1997. Cleavage of chordin by Xolloid metalloprotease suggests a role for proteolytic processing in the regulation of Spemann organizer activity. Cell 91, 407416.
  • Piccolo, S., Sasai, Y., Lu, B., DeRobertis, E. M. 1996. Dorsoventral patterning in Xenopus: Inhibition of ventral signals by direct binding of chordin to BMP-4. Cell86. 589–598.
  • Pituello, F., Homburger, V., Saint-Jeannet, J. P., Audigier, Y., Bockaert, J., Duprat, A. M. 1991. Expression of the guanine nucleotide-binding protein Go correlates with the state of neural competence in the amphibian embryo. Dev. Biol. 145, 311322.
  • Pituello, F., Médevielle, F., Foulquier, F., Duprat, A. M. 1999. Activation of Pax6 depends on somitogenesis in the chick embryo cervical spinal cord. Development 126, 587596.
  • Pituello, F., Yamada, G., Gruss, P. 1995. Activin A inhibits Pax-6 expression and perturbs cell differentiation in the developing spinal cord in vitro. Proc. Natl Acad. Sci. USA 92, 69526956.
  • Placzek, M. & Furley, A. 1996. Patterning cascades in the neural tube. Neural development. Curr. Biol. 6, 526529.
  • Plessow, S., Davids, M., Born, J. et al. 1990. Isolation of a vegetalizing inducing factor after extraction with acid ethanol. Concentration-dependent inducing activity of the factor. Cell Differ. Dev. 32, 2738.
  • Plessow, S., Köster, M., Knöchel, W. 1991. cDNA sequence of Xenopus laevis bone morphogenetic protein 2 (BMP-2). Biochim. Biophys. Acta 1089, 280282.
  • Rastegar, S., Friedle, H., Frommer, G., Knöchel, W. 1999. Transcriptional regulation of Xvent homeobox genes. Mech. Dev. 81, 139149.
  • Rebagliati, M. R. & Dawid, I. B. 1993. Expression of activin transcripts in follicle cells and oocytes of Xenopus laevis. Dev. Biol. 159, 574580.DOI: 10.1006/dbio.1993.1265
  • Rebagliati, M. R., Toyama, R., Haffter, P., Dawid, I. B. 1998. Cyclops encodes a nodal-related factor involved in midline signaling. Proc. Natl Acad. Sci. USA 95, 99329937.
  • Rebbert, M. L. & Dawid, I. B. 1997. Transcriptional regulation of the Xlim-1 gene by activin is mediated by an element in intron I. Proc. Natl Acad. Sci. USA 94, 97179722.
  • Resnick, J. L., Bixler, L. S., Cheng, L., Donovan, P. J. 1992. Long-term proliferation of mouse primordial germ cells in culture. Nature 359, 550551.
  • Rhinn, M., Dierich, A., Shawlot, W., Behringer, R. R., Le Meur, M., Ang, S. L. 1998. Sequential roles for Otx2 in visceral endoderm and neuroectoderm for forebrain and midbrain induction and specification. Development 125, 845856.
  • Richmann, C. M., Weiner, R. S., Yankee, R. A. 1976. Increase in circulating stem cells following chemotherapy in man. Blood 47, 10311039.
  • Richter, P. H. & Eigen, M. 1974. Diffusion controlled reactions in spheroidal geometry: Application to repressor-operator association and membrane bound enzymes. Biophys. Chem. 2, 253263.
  • Rohwedel, J., Maltsev, V., Bober, E., Arnold, H.-H., Hescheler, J., Wobus, A. M. 1994. Muscle cell differentiation of embryonic stem cells reflects myogenesis in vivo: Developmentally regulated expression of myogenic determination genes and functional expression of ionic currents. Dev. Biol. 164, 87101.DOI: 10.1006/dbio.1994.1182
  • Rohwedel, J., Sehlmeyer, U., Shan, J., Meister, A., Wobus, A. M. 1996. Primordial germ cell-derived mouse embryonic germ cells in vitro resemble undifferentiated stem cells with respect to differentiation capacity and cell cycle distribution. Cell Biol. Int. 20, 579587.
  • Rosa, F., Roberts, A. B., Danielpour, D., Dart, L. L., Sporn, M. B., Dawid, I. B. 1988. Mesoderm induction in amphibians: The role of TGF-β2-like factors. Science 239, 783785.
  • Rosa, F. M. 1989. Mix 1, a homeobox mRNA inducible by mesoderm inducers, is expressed mostly in the presumptive endodermal cells of Xenopus embryos. Cell 57, 965974.
  • Ruiz i Altaba, A. & Jessell, T. 1991a. Retinoic acid modifies mesodermal patterning in early Xenopus embryos. Genes Dev. 5, 175187.
  • Ruiz i Altaba, A. & Jessell, T. M. 1991b. Retinoic acid modifies the pattern of cell differentiation in the central nervous system of neurula stage Xenopus embryos. Development 112, 945958.
  • Ruiz i Altaba, A. & Jessell, T. M. 1992. Pintallavis, a gene expressed in the organizer and midline cells of frog embryos: Involvement in the development of the neural axis. Development 116, 8193.
  • Sasai, Y., Lu, B., Piccolo, S., DeRobertis, E. M. 1996. Endoderm induction by the organizer-secreted factors chordin and noggin in Xenopus animal caps. EMBO J. 15, 45474555.
  • Sasai, Y., Lu, B., Steinbeisser, H., DeRobertis, E. M. 1995. Regulation of neural induction by the Chd and Bmp-4 antagonistic patterning signals in Xenopus. Nature 376, 333336.
  • Sasai, Y., Lu, B., Steinbeisser, H., Geissert, D., Gont, L. K., DeRobertis, E. M. 1994. Xenopus chordin: A novel dorsalizing factor activated by organizer-specific homeobox genes. Cell 79, 779790.
  • Sater, A. K. & Jacobson, A. G. 1989. The specification of heart mesoderm occurs during gastrulation in Xenopus laevis. Development 105, 82130.
  • Saxén, L. 1961. Transfilter neural induction of amphibian ectoderm. Dev. Biol. 3, 140152.
  • Scharf, J. R. & Gerhart, J. C. 1980. Determination of the dorsal-ventral axis in eggs of Xenopus laevis. Rescue of UV impaired eggs by obligue orientation before first cleavage. Dev. Biol. 79, 181198.
  • Schier, A. & Shen, M. M. 2000. Nodal signalling in vertebrate development. Nature 403, 385389.
  • Schlumegger, M. P. & Grütter, M. G. 1992. An unusual feature revealed by the crystal structure at 2. 2 Ä resolution of human transforming growth factor β. Nature 358, 430433.
  • Schneider, V. A. & Mercola, M. 2001. Wnt antagonism initiates cardiogenesis in Xenopus laevis. Genes Dev. 15, 304315.
  • Schulte-Merker, S. & Smith, J. C. 1995. Mesoderm formation in response to Brachyury requires FGF signaling. Curr. Biol. 5, 6267.
  • Schulte-Merker, S., Smith, J. C., Dale, L. 1994. Effects of truncated activin and FGF receptors and of follistatin on the inducing activities of BVg 1 and activin: Does activin play a role in mesoderm induction? EMBO J. 13, 35333541.
  • Schwarz, W., Tiedemann, H., Tiedemann, H. 1981. High performance gel permeation chromatography of proteins. Mol. Biol. Rep. 8, 710.
  • Shamblott, M. J., Axelman, J., Littlefield, J. W. et al. 1901. Human embryonic germ cell derivatives express a broad reange of developmentally distinct markers and proliferate extensively in vitro. Proc. Natl Acad. Sci. USA 98, 113118.
  • Shamblott, M. S., Axelman, J., Wang, S. et al. 1998. Derivation of pluripotent stem cells from cultured human primordial germ cells. Proc. Natl Acad. Sci. USA 95, 13 72613 731.
  • Shawlot, W. & Behringer, R. R. 1995. Requirement for Lim1 in head-organizier function. Nature 374, 425430.
  • Simpson, E. H., Johnson, D. K., Hunsicker, P., Suffolk, R., Jordan, S. A., Jackson, I. J. 1999. The mouse Cer1 (Cerberus related or homologue) gene is not required for anterior pattern formation. Dev. Biol. 213, 202206.DOI: 10.1006/dbio.1999.9372
  • Slack, J. M. W. 1995. Developmental biology of the pancreas. Development 121, 15691580.
  • Slack, J. M. W., Darlington, B. G., Heath, S. K., Godsave, S. F. 1987. Mesoderm induction in early Xenopus embryos by heparin-binding growth factors. Nature 326, 197200.
  • Smith, A. G. 1991. Culture and differentiation of embryonic stem cells. Tissue Culture Methods 13, 8994.
  • Smith, J. C., Price, B. M. J., Green, J. B. A., Weigel, D., Herrmann, B. G. 1991. Expression of a Xenopus homolog of brachyury (T) is an immediate-early response to mesoderm Induction. Cell 67, 7987.
  • Smith, J. C., Price, B. M. J., Van Nimmen, K., Huylebroeck, D. 1990. Identification of a potent Xenopus mesoderm-inducing factor as a homologue of activin A. Nature 345, 729731.
  • Smith, W. C. & Harland, R. M. 1992. Expression cloning of noggin, a new dorsalizing factor localized to the Spemann organizer in Xenopus embryos. Cell 70, 829840.
  • Smith, W. C., Knecht, A. K., Wu, M., Harland, R. M. 1993. Secreted Noggin protein mimics the Spemann organizer in dorsalizing Xenopus mesoderm. Nature 361, 547549.
  • Snape, A., Wylie, C. C., Smith, J. C., Heasman, J. 1987. Changes in the state of commitment of single animal pole blastomeres of Xenopus laevis. Dev. Biol. 119, 503510.
  • Sokol, S. Y. 1996. Analysis of dishevelled signalling pathways during Xenopus development. Curr. Biol. 6, 14561467.
  • Solter, D. & Knowles, B. B. 1978. Monoclonal antibody defining a stage-specific mouse embryonic antigen (SSEA-1). Proc. Natl Acad. Sci. USA 75, 55655569.
  • Song, D. L., Chalepakis, G., Gruss, P., Joyner, A. L. 1996. Two Pax-binding sites are required for early embryonic brain expression of an engrailed-2–transgene. Development 122, 627635.
  • Spangrude, G. J., Heimfeld, J., Weissman, I. L. 1988. Purification and characterization of mouse hematopoietic stem cells. Science 241, 5862.
  • Spemann, H. 1918. Über die Determination der ersten Organanlagen des Amphibienembryos. Arch. Entw. Mech. Org. 43, 448535.
  • Spemann, H. 1936. Experimentelle Beiträge zu einer Theorie der Entwicklung. Springer, Berlin.
  • Spemann, H. & Mangold, H. 1924. Über die Induktion von Embryonalanlagen durch Immplantation artfremder Organisatoren. Wilhelm Roux’s Arch. Entw. Mech. Org. 100, 599638.
  • Spooncer, E., Heyworth, C. M., Dunn, A., Dexter, T. M. 1986. Self renewal and differentiation of interlerleukin-3–dependent multipotent stem cells are modulated by stromal cells and serum factors. Differentiation 31, 111118.
  • Stennard, F., Zorn, A. M., Ryan, K., Garrett, N., Gurdon, J. B. 1997. Differential expression of VegT and Antipodean protein isoforms in Xenopus. Mech. Dev. 86, 8798.
  • Stone, L. S. 1950. The role of retinal pigment cells in regenerating neural retinae of adult salamander eyes. J. Exp. Zool. 113, 930.
  • Streit, A., Berliner, A. J., Papanayotou, C., Sirulnik, A., Stern, C. D. 2000. Initiation of neural induction by FGF signaling before gastrulation. Nature 406, 7478.DOI: 10.1038/35017617
  • Sun, B. I., Bush, S. M., Collins-Racie, L. A. et al. 1999. derrière: A TGF-β family member required for posterior development in Xenopus. Development 126, 14671482.
  • Tadano, T., Otani, H., Taira, M., Dawid, I. B. 1993. Differential induction of regulatory genes during mesoderm formation in Xenopus laevis embryos. Dev. Genet. 14, 204211.
  • Taira, M., Otani, H., Saint-Jeannet, J. P., Dawid, I. B. 1994. Role of the LIM class homeodomain protein Xlim-1 in neural and muscle induction by the Spemann organizer in Xenopus. Nature 372, 677679.
  • Takahashi, S., Yokota, C., Takano, K. et al. 2000. Two novel nodal-related genes initiate early inductive events in Xenopus Nieuwkoop center. Development 127, 53195329.
  • Tannahill, D. & Melton, D. A. 1989. Localized synthesis of the Vg1 protein during early Xenopus development. Development 106, 775785.
  • Ter Horst, J. 1948. Differenzierungs- und Induktionsleistungen verschiedener Abschnitte der Medullarplatte und des Urdarmdaches von Triton im Kombinat. Roux’s Arch. Ent. Mech. Org. 143, 275303.
  • Thomas, P. & Beddington, R. 1996. Anterior primitive endoderm may be responsible for patterning the anterior neural plate in the mouse embryo. Curr. Biol. 6, 14871496.
  • Thomsen, G., Woolf, T., Whitman, M. et al. 1990. Activins are expressed early in Xenopus embryogenesis and can induce axial mesoderm and anterior structures. Cell 63, 485493.
  • Thomsen, G. H. & Melton, D. A. 1993. Processed Vg1 protein is an axial mesoderm inducer in Xenopus. Cell 74, 433441.
  • Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S. et al. 1998. Embryonic stem cell lines derived from human blastocysts. Science 282, 11451147.
  • Tiedemann, H. 1968. Entwicklung und Differenzierung höherer Organismen. Berl. Med. 19, 1526.
  • Tiedemann & Hildegard 1986a. The mechanism of neural induction: Neural differentiation of Triturus ectoderm exposed to hepes buffer. Roux’s Arch. Dev. Biol. 195, 399402.
  • Tiedemann & Hildegard 1986b. Test of embryonic inducing factors: Advantages and disadvantages of different procecdures. In Cellular Endocrinology (Eds G. Serrero & J. Hayashi), pp. 89–105. Alan R. Liss Inc., New York.
  • Tiedemann & Hildegard 1993. Mesoderm differentiation in early amphibian embryos depends on the animal cap. Roux‘s Arch. Dev. Biol. 203, 2833.
  • Tiedemann, H., Asashima, M., Born, J., Grunz, H., Knöchel, W., Tiedemann, H. 1996. Determination, induction and pattern formation in early amphibian embryos. Develop. Growth Differ. 38, 233246.
  • Tiedemann, H., Asashima, M., Grunz, H., Knöchel, W., Tiedemann, H. 1998. Neural induction in embryos. Develop. Growth Differ. 40, 363376.
  • Tiedemann, Hildegard, Born, J. 1978. Biological activity of vegetalizing and neuralizing inducing factors after binding to BAC-Cellulose and CNBr-Sepharose. Roux’s Arch. Dev. Biol. 184, 285299.
  • Tiedemann, H., Grunz, H., Knöchel, W., Tiedemann, H. 1995. Molecular mechanisms of tissue determination and pattern formation in amphibian embryos. Naturwissenschaften 82, 123134.DOI: 10.1007/s001140050153
  • Tiedemann, H., Grunz, H., Loppnow-Blinde, B., Tiedemann, H. 1994. Basic fibroblast growth factor can induce exclusively neural tissue in Triturus ectoderm explants. Roux‘s Arch. Dev. Biol. 203, 304309.
  • Tiedemann, H., Lottspeich, F., Davids, M., Knöchel, S., Hoppe, P., Tiedemann, H. 1992. The vegetalizing factor – a member of the evolutionarily highly conserved activin family. FEBS Lett. 300, 123126.
  • Tiedemann, H. & Tiedemann, H. 1954. Einbau von 14CO2 in gefurchte und ungefurchte Eihälften und in verschiedene Entwicklungsstadien von Triturus. Naturwissenschaften22, 535.
  • Tiedemann, H. & Tiedemann, H. 1956a. Versuche zur chemischen Kennzeichnung von embryonalen Induktionsstoffen. Hoppe Seyler’s Z. Physiol. Chem. 306, 732.
  • Tiedemann, H. & Tiedemann, H. 1956b. Isolierung von Ribonucleinsäure und Nucleotiden aus Embryonalextrakt und Leber und ihr Verhalten im Induktionsversuch Hoppe Seyler’s Z. Physiol. Chem. 306, 132142.
  • Tiedemann, H. & Tiedemann, H. 1964. Das Induktionsvermögen gereinigter Induktionsfaktoren im Kombinationsversuch. Rev. Suisse Zool. 71, 117137.
  • Tiedemann, H. & Tiedemann, H. 1999. Neural inducing factors from Xenopus laevis eggs and embryos. Develop. Growth Differ. 41, 201205.
  • Tiedemann, H., Tiedemann, H., Born, J. 1969. Polyvinylsulfate: Interaction with complexes of morphogenetic factors and their natural inhibitors. Science 164, 11751177.
  • Tiedemann-Waechter & Hildegard 1960. Die Selbstdifferenzierungsfähigkeit medianer und lateraler Teile der Rumpfmedullarplatte bei Urodelen. Roux’s Arch. Entw. Mech. Org. 152, 303338.
  • Toivonen, S. & Saxén, L. 1968. Morphogenetic interaction of presumptive neural and mesodermal cells mixed in different ratios. Science 159, 539540.
  • Toyama, R., Curtiss, P. E., Otani, H., Kimura, M., Dawid, I. B., Taira, M. 1995. The LIM class homeobox gene lim 5: Implied role in CNS patterning in Xenopus and Zebrafish. Dev. Biol. 170, 583593.DOI: 10.1006/dbio.1995.1238
  • Varlet, I., Collignon, J., Robertson, E. J. 1997. Nodal expression in the primitive endoderm is required for specification of the anterior axis during mouse gastrulation. Development 124, 10331044.
  • Vincent, J. P. & Gerhart, J. C. 1987. Subcortical rotation in Xenopus eggs: An early step in embryonic axis specification. Dev. Biol. 123, 526539.
  • Vize, P. D. 1996. DNA sequences mediating the transcriptional response of the Mix 2 homeobox gene to mesoderm induction. Dev. Biol. 177, 226231.DOI: 10.1006/dbio.1996.0158
  • Vleminckx, K., Kemler, R., Hecht, A. 1999. The C-terminal transactivation domain of β-catenin is necessary and sufficient for signaling by the LEF-1/β-catenin complex in Xenopus laevis. Mech. Dev. 81, 6574.
  • Waechter & Hildegard 1951. Implantation von indifferentem embryonalen Gewebe in die Leibeshöhle erwachsener Molche. Wilhelm Roux’s Arch. Entw. Mech. Org. 144, 572617.
  • Waechter & Hildegard 1953. Die Induktionsfähigkeit der Gehirnplatte bei Urodelen und ihr median-laterales Gefälle. Roux’s Arch. Dev. Biol. 146, 201274.
  • Wang, S. W., Krinks, M., Lin, K. M., Luyten, F. P., Moos, Jr M. 1997. Frzb, a secreted protein expressed in the Spemann organizer, binds and inhibits Wnt-8. Cell 88, 757766.
  • Watabe, T., Kim, S., Candia, A. et al. 1995. Molecular mechanisms of Spemann’s organizer formation: Conserved growth factor synergy between Xenopus and mouse. Genes Dev. 9, 30383050.
  • Weber, H., Symes, E., Walmsley, M. E., Rodaway, A. R. F., Patient, R. K. 2000. A role for GATA5 in Xenopus endoderm specification. Development 127, 43454360.
  • Weissman, I. L. 2000. Stem cells: Units of development, units of regeneration and units of evolution. Cell 100, 157168.
  • Whitman, M. 1998. Smads and early developmental signaling by the TGF-β superfamily. Genes Dev. 12, 24452462.
  • Wilmut, I., Schnieke, A. E., McWhir, J., Kind, A. J., Campbell, K. H. 1997. Viable offspring derived from fetal and adult mammalian cells. Nature 385, 810813.
  • Wilson, P. A. & Hemmati Brivanlou, A. 1995. Induction of epidermis and inhibition of neural fate by Bmp-4. Nature 376, 331333.
  • Wittbrodt, J. & Rosa, F. M. 1994. Disruption of mesoderm and axis formation in fish by ectopic expression of activin variants: The role of maternal activin. Genes Dev. 8, 14481462.
  • Wobus, A. M., Holzhausen, H., Jäkel, P., Schöneich, J. 1984. Characterization of pluripotent stem cells line derived from a mouse embryo. Exp. Cell Res. 152, 212219.
  • Wozney, S. M. 1994. Molecular biology of the bone morphogenetic proteins. In Bone Grafts, Derivatives and Substitutes (Eds M. R. Urist, B. T O’Conner & R. G Burwell), pp. 397–413. Butterworth Heinemann, London.
  • Wylie, C., Kofron, M., Payne, C. et al. 1996. Maternal β-catenin establishes a ‘dorsal signal’ in early Xenopus embryos. Development 122, 29872996.
  • Wylie, C. C., Snape, A., Heasman, J., Smith, J. C. 1987. Vegetal pole cells and commitment to form endoderm in Xenopus laevis. Dev. Biol. 119, 496502.
  • Wyman, J. 1964. Allostenic effects in hemoglobin. Cold Spring Harbor Symp. Quant. Biol. 28, 483489.
  • Yamada, T. 1940. Beeinflussung der Differenzierungsleistung des isolierten Mesoderms von Molchkeimen durch zugefügtes Chorda- und Neuralmaterial. Okajimas Fol. Jpn. 19, 131197.
  • Yamada, T. & McDevitt, D. S. 1974. Direct evidence for transformation of differentiated iris epithelial cells into lens cells. Dev. Biol. 38, 104118.
  • Yamagishi, T., Nishimatsu, S.-I., Nomura, S., Asashima, M., Murakami, K., Ueno, N. 1995. Expression of BMP-2, 4 genes during early development in Xenopus. Zool. Sci. 12, 355358.
  • Yamashita, H., Ten Dijke, P., Huylebroeck, D. et al. 1995. Osteogenic protein-1 binds to activin type II receptors and induces certain activin-like effects. J. Cell. Biol. 130, 217226.
  • Yasuo, H. & Lemaire, P. 1999. A two-step model for the fate determination of presumptive endodermal blastomeres in Xenopus embryos. Curr. Biol. 9, 869879.
  • Yeo, C. Y., Chen, X., Whitman, M. 1999. The role of FAST-1 and Smads in transcriptional regulation by activin during early Xenopus embryogenesis. J. Biol. Chem. 274, 26 584 26 590.
  • Yost, C., Torres, M., Miller, J. R., Huang, E., Kimelman, D., Moon, R. T. 1996. The axis-inducing activity, stability, and subcellular distribution of β-catenin is regulated in Xenopus embryos by glycogen synthase kinase 3. Genes Dev. 10, 14431454.
  • Zaraisky, A. G., Ecochard, V., Kazanskaya, O. V., Lukyanov, S. A., Fesenko, I. V., Duprat, A. M. 1995. The homeobox- containing gene XANF-1 may control development of the Spemann organizer. Development 121, 38393847.
  • Zhang, J., Houston, D. W., King, M. L., Payne, C., Wylie, C., Heasman, J. 1998. The role of maternal VegT in establishing the primary germ layers in Xenopus embryos. Cell 94, 515524.
  • Zhou, X., Sasaki, H., Lowe, L., Hogan, B. L. M., Kuehn, M. R. 1993. Nodal is a novel TGF-β-like gene expressed in the mouse node during gastrulation. Nature 361, 543547.
  • Zhu, A. J., Hasse, I., Watt, R. M. 1999. Signaling via beta1 integrins and mitogen-activated protein kinase determines human epidermal stem cell fate in vitro. Proc. Natl Acad. Sci. USA 96, 67286733.
  • Zimmermann, L. B., De Jesus-Escobar, J. M., Harland, R. M. 1996. The Spemann organizer signal noggin binds and inactivates bone morphogenetic protein 4. Cell 86, 599606.