• 1
    Banerjee, S. D., Cohn, R. H., Bernfield, M. R. 1977. Basal lamina of embryonic salivary epithelia: Production by the epithelium and role in maintaining lobular morphology. J. Cell Biol. 73, 445463.
  • 2
    Bennett, D. C. 1980. Morphogenesis of branching tubules in cultures of cloned mammary epithelial cells. Nature 285, 657659.
  • 3
    Charonis, A. S., Skubitz, A. P. N., Koliakos, G. G. et al. 1988. A novel synthetic peptide from the B1 chain of laminin with heparin-binding and cell adhesion-promoting activities. J. Cell Biol. 107, 12531260.
  • 4
    Ekblom, P. 1996. Receptors for laminins during epithelial morphogenesis. Curr. Opin. Cell Biol. 8, 700706.
  • 5
    Ekblom, P., Ekblom, M., Fecker, L. et al. 1994. Role of mesenchymal nidogen for epithelial morphogenesis in vitro. Development 120, 20032014.
  • 6
    Fox, J. W., Mayer, U., Nischt, R. et al. 1991. Recombinant nidogen consists of three globular domains and mediates binding of laminin to collagen type IV. EMBO J. 10, 31373146.
  • 7
    Gee, S. H., Blacher, R. W., Douville, P. J., Provost, P. R., Yurchenco, P. D., Carbonetto, S. 1993. Laminin-binding protein 120 from brain is closely related to the dystrophin- associated glycoprotein, dystroglycan, and binds with high affinity to the major heparin binding domain of laminin. J. Biol. Chem. 268, 14 97214 980.
  • 8
    Gehlsen, K. R., Sriramarao, P., Furcht, L. T., Skubitz, A. P. N. 1992. A synthetic peptide derived from the carboxy terminus of the laminin A chain represents a binding site for the α3β1 integrin. J. Cell Biol. 117, 449459.
  • 9
    Gerl, M., Mann, K., Aumailley, M., Timpl, R. 1991. Localization of a major nidogen-binding site to domain III of laminin B2 chain. Eur. J. Biochem. 202, 167174.
  • 10
    Giancotti, F. G. 1996. Signal transduction by the α6β4 integrin: Charting the path between laminin binding and nuclear events. J. Cell Sci. 109, 11651172.
  • 11
    Gittes, G. K., Galante, P. E., Hanahan, D., Rutter, W. J., Debas, H. T. 1996. Lineage-specific morphogenesis in the developing pancreas: Role of mesenchymal factors. Development 122, 439447.
  • 12
    Graf, J., Iwamoto, Y., Sasaki, M. et al. 1987. Identification of an amino acid sequence in laminin mediating cell attachment, chemotaxis, and receptor binding. Cell 48, 989996.
  • 13
    Grant, D. S., Leblond, C. P., Kleinman, H. K., Inoue, S., Hassell, J. R. 1989. The incubation of laminin, collagen IV, and heparan sulfate proteoglycan at 35 yields basement membrane-like structures. J. Cell Biol. 108, 15671574.
  • 14
    Gresik, E. W., Kashimata, M., Kadoya, Y., Mathews, R., Minami, N., Yamashina, S. 1997. Expression of epidermal growth factor receptors in fetal mouse submandibular gland detected by a biotinyltyramide-based catalyzed signal amplification method. J. Histochem. Cytochem. 45, 16511657.
  • 15
    Hahm, H. A. & Ip, M. M. 1990. Primary culture of normal rat mammary epithelial cells within a basement membrane matrix: I. Regulation proliferation by hormones and growth factors. In Vitro Cell. Dev. Biol. 26, 791802.
  • 16
    Hoffman, M. P., Nomizu, M., Roque, E. et al. 1998. Laminin-1 and laminin-2 G-domain synthetic peptides bind syndecan-1 and are important for acinar formation of a human submandibular gland cell line. J. Biol. Chem. 273, 28 63328 641.
  • 17
    Kadoya, Y., Kadoya, K., Durbeej, M., Holmvall, K., Sorokin. L., Ekblom, P. 1995. Antibodies against domain E3 of laminin-1 and integrin α6 subunit perturb branching epithelial morphogenesis of submandibular gland, but by different modes. J. Cell Biol. 129, 521534.
  • 18
    Kadoya, Y., Nomizu, M., Sorokin, L. M., Yamashina, S., Yamada, Y. 1998. Laminin α1 chain G domain peptide, RKRLQVQLSIRT, inhibits epithelial branching morphogenesis of cultured embryonic mouse submandibular gland. Dev. Dyn. 212, 394402.
  • 19
    Kadoya, Y., Salmivirta, K., Talts, J. F. et al. 1997. Importance of nidogen binding to laminin γ1 for branching epithelial morphogenesis of the submandibular gland. Development 124, 683691.
  • 20
    Kadoya, Y. & Yamashina, S. 1991. Reconstruction of the basement membrane in a cultured submandibular gland. Anat. Embryol. 183, 491499.
  • 21
    Kashimata, M. & Gresik, E. W. 1997. Epidermal growth factor system is a physiological regulator of development of the mouse fetal submandibular gland and regulates expression of the α6-integrin subunit. Dev. Dyn. 208, 149161.
  • 22
    Kivirikko, K. I., Laitinen, O., Prockop, D. J. 1967. Modifications of a specific assay for hydroxyproline in urine. Anal. Biochem. 19, 249255.
  • 23
    Klein, G., Langegger, M., Timpl, R., Ekblom, P. 1988. Role of laminin A chain in the development of epithelial cell polarity. Cell 55, 331341.
  • 24
    Kleinman, H. K., Graf, J., Iwamoto, Y. et al. 1989. Identification of a second active site in laminin for promotion of cell adhesion and migration and inhibition of in vivo melanoma lung colonization. Arch. Biochem. Biophys. 272, 3945.
  • 25
    Kubota, Y., Kleinman, H. K., Martin, G. R., Lawley, T. J. 1988. Role of laminin and basement membrane in the morphological differentiation of human endothelial cells into capillary-like structures. J. Cell Biol. 107, 15891598.
  • 26
    Matter, M. L. & Laurie, G. W. 1994. A novel laminin E8 cell adhesion site required for lung alveolar formation in vitro. J. Cell Biol. 124, 10831090.
  • 27
    Montesano, R., Matsumoto, K., Nakamura, T., Orci, L. 1991. Identification of a fibroblast-derived epithelial morphogen as hepatocyte growth factor. Cell 67, 901908.
  • 28
    Nicosia, R. F., Bonanno, E., Smith, M., Yurchenco, P. 1994. Modulation of angiogenesis in vitro by laminin-entactin complex. Dev. Biol. 164, 197206.
  • 29
    Nogawa, H. & Ito, T. 1995. Branching morphogenesis of embryonic mouse lung epithelium in mesenchyme-free culture. Development 121, 10151022.
  • 30
    Nogawa, H. & Takahashi, Y. 1991. Substitution for mesenchyme by basement-membrane-like substratum and epidermal growth factor in inducing branching morphogenesis of mouse salivary epithelium. Development 112, 855861.
  • 31
    Nomizu, M., Kim, W. H., Yamamura, K. et al. 1995. Identification of cell binding sites in the laminin α1 chain carboxyl-terminal globular domain by systematic screening of synthetic peptides. J. Biol. Chem. 270, 20 58320 590.
  • 32
    Roman, J., Little, C. W., McDonald, J. A. 1991. Potential role of RGD-binding integrins in mammalian lung branching morphogenesis. Development 112, 551558.
  • 33
    Salmivirta, M., Mali, M., Heino, J., Hermonen, J., Jalkanen, M. 1994. A novel laminin-binding form of syndecan-1 (cell surface proteoglycan) produced by syndecan-1 cDNA-transfected NIH-3T3 cells. Exp. Cell Res. 215, 180188.
  • 34
    Schuger, L., O’shea, S., Rheinheimer, J., Varani, J. 1990. Laminin in lung development: Effects of anti-laminin antibody in murine lung morphogenesis. Dev. Biol. 137, 2632.
  • 35
    Schuger, L., Skubitz, A. P. N., O’shea, K. S., Chang, J. F., Varani, J. 1991. Identification of laminin domains involved in branching morphogenesis: Effects of anti-laminin monoclonal antibodies on mouse embryonic lung development. Dev. Biol. 146, 531541.
  • 36
    Skubitz, A. P. N., Letourneau, P. C., Wayner, E., Furcht, L. T. 1991. Synthetic peptides from the carboxy-terminal globular domain of the A chain of laminin: Their ability to promote cell adhesion and neurite outgrowth, and interact with heparin and the β1 integrin subunit. J. Cell Biol. 115, 11371148.
  • 37
    Sonnenberg, A., Linders, C. J. T., Modderman, P. W., Damsky, C. H., Aumailley, M., Timpl, R. 1990. Integrin recognition of different cell-binding fragments of laminin (P1, E3, E8) and evidence that α6β1 but not α6β4 functions as a major receptor for fragment E8. J. Cell Biol. 110, 21452155.
  • 38
    Sorokin, L. M., Conzelmann, S., Ekblom, P., Battaglia, C., Aumailley, M., Timpl, R. 1992. Monoclonal antibodies against laminin A chain fragment E3 and their effects on binding to cells and proteoglycan and on kidney development. Exp. Cell Res. 201, 137144.
  • 39
    Takahashi, Y. & Nogawa, H. 1991. Branching morphogenesis of mouse salivary epithelium in basement membrane-like substratum separated from mesenchyme by the membrane filter. Development 111, 327335.
  • 40
    Tashiro, K., Sephel, G. C., Weeks, B. et al. 1989. A synthetic peptide containing the IKVAV sequence from the A chain of laminin mediates cell attachment, migration, and neurite outgrowth. J. Biol. Chem. 264, 1617416182.
  • 41
    Taub, M., Wang, Y., Szczesny, T. M., Kleinman, H. K. 1990. Epidermal growth factor or transforming growth factor α is required for kidney tubulogenesis in matrigel cultures in serum-free medium. Proc. Natl Acad. Sci. USA 87, 40024006.
  • 42
    Timpl, R. 1989. Structure and biological activity of basement membrane proteins. Eur. J. Biochem. 180, 487502.
  • 43
    Yang, J., Richards, J., Bowman, P. et al. 1979. Sustained growth and three-dimensional organization of primary mammary tumor epithelial cells embedded in collagen gels. Proc. Natl Acad. Sci. USA 76, 34013405.
  • 44
    Yang, J., Richards, J., Guzman, R., Imagawa, W., Nandi, S. 1980. Sustained growth in primary culture of normal mammary epithelial cells embedded in collagen gels. Proc. Natl Acad. Sci. USA 77, 20882092.
  • 45
    Yurchenco, P. D., Cheng, Y-S., Colognato, H. 1992. Laminin forms an independent network in basement membranes. J. Cell Biol. 117, 11191133.