SEARCH

SEARCH BY CITATION

References

  • Ariizumi, T., Moriya, N., Uchiyama, H., Asashima, M. 1991. Concentration-dependent inducing activity of activin A. Roux’s Arch. Dev. Biol. 200, 230 233.
  • Asashima, M., Kinoshita, K., Ariizumi, T., Malacinski, G. M. 1999. Role of activin and other peptide growth factors in body patterning in the early amphibian embryo. Intern. Rev. Cytol. 191, 1 52.
  • Asashima, M., Nakano, H., Shimada, K. et al. 1990. Mesodermal induction in early amphibian embryos by activin A (erythroid differentiation factor). Roux’s. Arch. Dev. Biol. 198, 330 335.
  • Chalmers, A. D. & Slack, J. M. W. 1998. Development of the gut in Xenopus laevis. Dev. Dyn. 212, 509 521.DOI: 10.1002/(sici)1097-0177(199808)212:4<509::aid-aja4>3.0.co;2-l
  • Chen, Y., Huang, L., Solursh, M. 1994. A concentration gradient of retinoids in the early Xenopus laevis embryo. Dev. Biol. 161, 70 76.DOI: 10.1006/dbio.1994.1008
  • Durston, A. J., Timmermans, J. P. M., Hage, W. J. et al. 1989. Retinoic acid causes an anteroposterior transformation in the developing central nervous system. Nature 340, 140 144.
  • Ellinger-Ziegelbauer, H. & Dreyer, C. 1991. A retinoic acid receptor expressed in the early development of Xenopus laevis. Genes Dev. 5, 94 104.
  • Gamer, L. W. & Wright, C. V. E. 1995. Autonomous endodermal determination in Xenopus: Regulation of expression of the pancreatic gene XlHbox8. Dev. Biol. 171, 240 251.DOI: 10.1006/dbio.1995.1275
  • Golosow, N. & Grobstein, C. 1962. Epitheliomesenchymal interaction in pancreatic morphogenesis. Dev. Biol. 4, 242 255.
  • Green, J. B. A. & Smith, J. C. 1990. Graded changes in dose of a Xenopus activin A homologue elicit stepwise transitions in embryonic cell fate. Nature 347, 391 394.
  • Hebrok, M., Kim, S. K., Melton, D. A. 1998. Notochord repression of endodermal Sonic hedgehog permits pancreas development. Genes Dev. 12, 1705 1713.
  • Helms, J. A., Kim, C. H., Hu, D., Minkoff, R., Thaller, C., Eichele, G. 1997. Sonic hedgehog participates in craniofacial morphogenesis and is down-regulated by teratogenic doses of retinoic acid. Dev. Biol. 187, 25 35.DOI: 10.1006/dbio.1997.8589
  • Helms, J., Thaller, C., Eichele, G. 1994. Relationship between retinoic acid and sonic hedgehog, two polarizing signals in the chick wing bud. Development 120, 3267 3274.
  • Henry, G. L., Brivanlou, I. H., Kessler, D. S., Hemmati-Brivanlou, A., Melton, D. A. 1996. TGF-β signals and a pattern in Xenopus laevis endodermal development. Development 122, 1007 1015.
  • Jonsson, J., Carlsson, L., Edlund, T., Edlund, H. 1994. Insulin-promoter-factor 1 is required for pancreas development in mice. Nature 371, 606 609.
  • Kim, S. K., Hebrok, M., Melton, D. A. 1997. Notochord to endoderm signaling is required for pancreas development. Development 124, 4243 4252.
  • Kim, S. K. & Melton, D. A. 1998. Pancreas development is promoted by cyclopamine, a Hedgehog signaling inhibitor. Proc. Natl Acad. Sci. USA 95, 13 036 13 041.
  • Kolm, P. J., Apekin, V., Sive, H. 1997. Xenopus hindbrain patterning requires retinoid signaling. Dev. Biol. 192, 1 6.DOI: 10.1006/dbio.1997.8754
  • Leone, F., Lambert-Gardini, S., Sartori, C., Scapin, S. 1976. Ultrastructural analysis of some functional aspects of Xenopus laevis pancreas during development and metamorphosis. J. Embryol. Exp. Morphol. 36, 711 724.
  • Lopez, S. L. & Carrasco, A. E. 1992. Retinoic acid induces changes in the localization of homeobox proteins in the antero-posterior axis of Xenopus laevis embryos. Mech. Dev. 36, 153 164.
  • Lozano, M. T., Hernandes, M. P. G., Agulleiro, B. 1999. Endocrine pancreatic cells from Xenopus laevis: Light and electron microscopic studies. Gen. Comp. Endocrinol. 114, 191 205.
  • Maake, C., Hanke, W., Reineche, M. 1998. An immunohistochemical and morphometric analysis of insulin, insulin-like growth factor I, glucagon, and PP in the development of the gastro-entero-pancreatic system of Xenopus laevis. Gen. Comp. Endocrinol.110, 182–195.
  • Moriya, N., Komazaki, S., Asashima, A. 2000. In vitro organogenesis of pancreas in Xenopus laevis dorsal lips treated with retinoic acid. Develop. Growth Differ. 42, 175 185.
  • Moriya, N., Uchiyama, H., Asashima, A. 1993. Induction of pronephric tubules by activin and retinoic acid in presumptive ectoderm of Xenopus laevis. Develop. Growth Differ. 35, 123 128.
  • Moriya, N., Yokota, C., Takashi, A., Asashima, A. 1998. In vitro control of embryonic axis formation by activin A, concanavalin A, and retinoic acid in Xenopus laevis. Zool. Sci. 15, 879 886.
  • Nieuwkoop, P. D. & Faber, J. 1956. Normal table of Xenopus laevis (Daudin). North-Holland, Amsterdam.
  • Ninomiya, H., Takahashi, S., Tanegashima, K., Yokota, C., Asashima, M. 1999. Endoderm differentiation and inductive effect of activin-treated ectoderm in Xenopus. Develop. Growth Differ. 41, 391 400.
  • Offield, M. F., Jetton, T. L., Labosky, P. A. et al. 1996. PDX-1 is required for pancreatic outgrowth and differentiation of the rostral duodenum. Development 122, 983 995.
  • Ogura, T., Alvarez, I. S., Vogel, A., Rodriguez, C., Evans, R. M., Belmonte, J. C. I. 1996. Evidence that Shh cooperates with a retinoic acid inducible co-factor to establish ZPA-like activity. Development 120, 3267 3274.
  • Okada, T. S. 1960. Epithelio-mesenchymal relationships in the regional differentiation of the digestive tract in the amphibian embryo. Roux’s Arch. 152, 1 21.
  • Ruiz i Altaba, A. & Jessell, T. 1991a. Retinoic acid modifies the pattern of cell differentiation in the central nervous system of neurula stage Xenopus embryos. Development 112, 945 958.
  • Ruiz i Altaba, A. & Jessell, T. 1991b. Retinoic acid modifies mesodermal patterning in early Xenopus embryos. Genes Dev. 5, 175 187.
  • Shuldiner, A. R., De Pablo, F., Moore, C. A., Roth, J. 1991. Two nonallelic insulin genes in Xenopus laevis are expressed differentially during neurulation in prepancreatic embryos. Proc. Natl Acad. Sci. USA 88, 7679 7683.
  • Slack, J. M. W. 1995. Developmental biology of the pancreas. Development 121, 1569 1580.
  • Wright, C. V. E., Schnegelsberg, P., De Robertis, E. D. 1989. XlHbox8: A novel Xenopus homeo protein restricted to a narrow band of endoderm. Development 105, 787 794.
  • Yasugi, S. 1993. Role of epithelia–mesenchymal interaction in differentiation of epithelium of vertebrate digestive tract. Develop. Growth Differ. 35, 1 9.
  • Zeynali, B. & Dixon, K. E. 1998. Effects of retinoic acid on the endoderm in Xenopus embryos. Dev. Genes Evol. 208, 318 326.DOI: 10.1007/s004270050187