SEARCH

SEARCH BY CITATION

Keywords:

  • chick limb development;
  • frizzled-10;
  • Sonic hedgehog;
  • Wnt-7a

Abstract

  1. Top of page
  2. Abstract
  3. Introduction
  4. Materials and Methods
  5. Results
  6. Discussion
  7. Acknowledgements
  8. References

The dorsal ectoderm of the limb bud is known to regulate anterior–posterior patterning as well as dorsal– ventral patterning during vertebrate limb morphogenesis. Wnt-7a, expressed in the dorsal ectoderm, encodes a key molecule implicated in these events. In the present study, chicken frizzled-10 (Fz-10) encoding a Wnt receptor was used to study mechanisms of Wnt-7a signaling during chick limb patterning, because its expression is restricted to the posterior-distal region of the dorsal limb bud. Fz-10 transcripts colocalize with Sonic hedgehog (Shh) in the dorsal side of stages 18–23 chick limb buds. It was demonstrated that Fz-10 interacts with Wnt-7a to induce synergistically the expression of Wnt-responsive genes, such as Siamois and Xnr3, in Xenopus animal cap assays. In the chick limb bud, Fz-10 expression is regulated by Shh and a signal from the dorsal ectoderm, presumably Wnt-7a, but not by signals from the apical ectodermal ridge. These results suggest that Fz-10 acts as a receptor for Wnt-7a and has a positive effect on Shh expression in the chick limb bud.


Introduction

  1. Top of page
  2. Abstract
  3. Introduction
  4. Materials and Methods
  5. Results
  6. Discussion
  7. Acknowledgements
  8. References

While much is known about tissue interactions that regulate patterning and outgrowth of the vertebrate limb bud, much remains unknown about the precise molecular mechanisms mediating these tissue interactions ( Tickle & Eichele 1994; Johnson & Tabin 1997). During vertebrate limb development, specialized structures termed signaling centers are established. Secreted factors are produced from the signaling centers and mediate tissue interactions essential for limb outgrowth and patterning ( Johnson & Tabin 1997). Wnt-7a, a member of the Wnt family of secretory proteins, is produced by the entire dorsal ectoderm and determines the dorsal–ventral patterning of the limb mesenchyme by inducing the transcription factor Lmx1 in the dorsal mesenchyme ( Parr & McMahon 1995; Riddle et al. 1995 ; Vogel et al. 1995 ; Chen et al. 1998 ). In addition, Wnt-7a is involved in the maintenance of Sonic hedgehog (Shh) expression ( Parr & McMahon 1995; Yang & Niswander 1995) and thus is involved in anterior–posterior patterning. Shh, expressed in the zone of polarizing activity (ZPA) located at the posterior-distal region of the limb mesenchyme, is essential for anterior–posterior patterning and maintaining limb outgrowth ( Riddle et al. 1993 ; Chiang et al. 1996 ; Hammerschmidt et al. 1997 ). Removal of Wnt-7a by gene targeting or surgical manipulation results in reduced Shh expression in addition to loss of Lmx1 expression ( Parr & McMahon 1995; Yang & Niswander 1995). Wnt-7a null mice exhibit truncations of the distal elements, which are also observed in Shh–/– mice ( Chiang et al. 1996 ). Implanting Wnt-7a-expressing cells to the posterior region of limb bud after dorsal ectoderm removal rescues Shh expression ( Yang & Niswander 1995). Although these reports show that Wnt-7a is required to maintain Shh expression in the ZPA, the mechanism by which Wnt-7a from the dorsal ectoderm influences the posterior Shh expression is not well understood.

The Wnt family is known to act through frizzled (Fz) receptors. The Fz proteins have an N-terminal extracellular cysteine-rich domain that possibly binds to Wnt proteins, a seven-pass transmembrane domain and a C-terminal cytoplasmic tail domain. To date, 10 members of the Fz family have been identified in vertebrates and several members are expressed during limb development ( Kengaku et al. 1997 ; Nohno et al. 1999 ; Kawakami et al. 2000). The interactions between Wnt members and Fz members have been examined in several experimental contexts, including in vitro binding assays, genetic studies and Xenopus development ( Bhanot et al. 1996 ; Yang-Snyder et al. 1996 ; He et al. 1997 ; Rocheleau et al. 1997 ; Liu et al. 1999 ). However, in order to understand the mechanisms of Wnt signaling during limb development, it is necessary to identify the Fz receptors involved in Wnt signaling during limb development.

Recently, we have identified chick Fz-10, which is expressed in the posterior-distal mesenchyme of the developing limb bud (Kawakami et al. 2000). The expression suggested a possible interaction between Fz-10 and Wnt-7a. In the present paper, we have analyzed the expression of Fz-10 to characterize its role in limb development. Several lines of evidence suggest that Fz-10 is involved in a positive interaction between Wnt-7a and Shh in the limb bud, by acting as a Wnt-7a receptor.

Materials and Methods

  1. Top of page
  2. Abstract
  3. Introduction
  4. Materials and Methods
  5. Results
  6. Discussion
  7. Acknowledgements
  8. References

Cloning of chick Wnt-7a and Wnt-3a

When we performed reverse transcriptase–polymerase chain reaction (RT-PCR) on chick cDNA obtained from stages 18–21 embryos ( Tanda et al. 1995 ), we obtained Wnt-7a and Wnt-3a cDNA fragments. The entire coding sequence of chick Wnt-7a was obtained by rapid amplification of cDNA ends (RACE) from stage 21 limb bud cDNA according to the manufacturer’s instructions (GIBCO-BRL, Rockville, MD, USA). The entire coding sequence of chick Wnt-3a was obtained by RACE according to the previous method ( Nohno et al. 1997 ).

In situ hybridization

Chick embryos were staged according to Hamburger and Hamilton (1951). Whole-mount in situ hybridization was carried out as described previously ( Wilkinson 1992) using the following chick cDNA. An antisense RNA probe for Fz-10 has been reported (Kawakami et al. 2000). Shh was used as described previously ( Nohno et al. 1995 ; Wada et al. 1999 ). Chick Lmx1 was obtained by PCR based on the published sequence ( Riddle et al. 1995 ). Two-color in situ hybridization was performed according to the published method by using fluorescein isothiocyanate (FITC)-labeled Fz-10 probe and digoxigenin (DIG)-labeled Shh probe ( Hauptmann & Gerster 1994). Corresponding sense probes were used as controls and showed no significant hybridization signal under the same conditions as the antisense probes.

Injection of synthetic mRNA into Xenopus embryos

The entire coding sequences of chick Wnt-7a, chick Wnt-3a and Fz-10 were subcloned into pCS2(+) vector and the corresponding mRNA was synthesized using the SP6 mMessage Machine Kit (Ambion Inc., Austin, TX, USA). Microinjection of the RNA was performed as described ( Nishimatsu & Thomsen 1998). Animal caps were explanted at the early blastula stage (stage 8.5) and harvested at stage 11 for RT-PCR analysis. Polymerase chain reaction was carried out for 21 cycles to detect EF1α and 25 cycles to detect Siamois and Xnr3. Sequences of the PCR primers were as described ( Brannon & Kimelman 1996; McKendry et al. 1997 ; Nishimatsu & Thomsen 1998). We repeated the experiments three times to analyze interaction between Fz-10 and Wnts in Xenopus embryos and finally determined Siamois and Xnr3 expression quantitatively by using BAS-2000 imaging plate system (Fuji Photo Film Co., Tokyo, Japan).

Surgical manipulations

To examine the role of Wnt-7a in Fz-10 expression, the dorsal ectoderm of the wing bud was removed at stages 20–21 without disturbing the underlying limb mesenchyme as described ( Yang & Niswander 1995). Because the embryos with dorsal ectoderm removed sometimes displayed defects in limb outgrowth caused by the toxic effects of Nile blue on the apical ectodermal ridge (AER), we treated six or more embryos at once and repeated the experiments at least three times. To misexpress Wnt-7a, chick embryonic fibroblasts were transfected with RCAS retrovirus vector bearing chick Wnt-7a and grafted to the posterior- distal region of the ventral side of stage 20 limb buds. Ectopic expression of Shh in the anterior margin of the limb bud was carried out as described using virus-resistant wild-type embryos as hosts at stages 20–21 ( Kawakami et al. 1996 ; Wada et al. 1999 ). Removing the posterior AER was done on stage 20–21 limb buds as previously reported using fine tungsten needles ( Nohno et al. 1997 ). The embryos were harvested at desired stages for gene expression analysis.

Results

  1. Top of page
  2. Abstract
  3. Introduction
  4. Materials and Methods
  5. Results
  6. Discussion
  7. Acknowledgements
  8. References

Cloning of chick Wnt-7a and Wnt-3a

To analyze the role of Fz-10 during chick limb development, first we isolated the entire coding sequence of chick Wnt-7a and Wnt-3a. These Wnts are possible ligands for Fz-10, because the Wnt-7a expression domain ( Dealy et al. 1993 ) and the Wnt-3a expression domain ( Kengaku et al. 1997 ) are in close proximity to that of Fz-10. Both Wnt-7a and Wnt-3a have 24 conserved cysteine residues that are characteristic of Wnt proteins ( Fig. 1). The deduced amino acid sequence of chick Wnt-7a has 92.8% identity to the mouse counterpart, while that of chick Wnt-3a has 81.8% identity.

image

Figure 1. Deduced amino acid sequences of two chick Wnts. The amino acid sequences of chick Wnt-7a (A) and chick Wnt-3a (B) are shown. Asterisks indicate conserved cysteine residues that are characteristic of Wnt proteins. The nucleotide sequences of chick Wnt-3a and Wnt-7a have been deposited in the DDBJ/EMBL/GenBank databases with accession numbers AB024080 and AB045629, respectively.

Download figure to PowerPoint

Frizzled-10 transcripts colocalize with those of Shh in the limb bud

Our previous report has shown that Fz-10 expression in the developing limb mesenchyme is restricted to the posterior-dorsal region (Kawakami et al. 2000). The expression in the posterior-distal region has close proximity to that of Shh expression, which is maintained by Wnt-7a and fibroblast growth factors. Therefore, it has been suggested that Fz-10 acts in a Wnt signaling pathway that is involved in Shh expression. To examine this hypothesis, we compared the expression patterns of Fz-10 and Shh during limb development. Fz-10 is expressed weakly in the posterior region of the limb bud at stage 19 ( Fig. 2A) and the signal colocalizes with Shh only in the dorsal domain ( Fig. 2B). At stage 21, Fz-10 is expressed in the posterior-distal region of the limb bud and it is restricted to the dorsal region ( Fig. 2C,D). At this stage, it is clearly observed that the transcripts colocalize with Shh ( Fig. 2E) in the dorsal domain ( Fig. 2F). At stage 23, Fz-10 expression domain expands distally, but it still colocalizes with Shh in the posterior-distal region ( Fig. 2G).

image

Figure 2. Comparison of expression patterns of Fz-10 and Shh during limb development. (A) Dorsal view of Fz-10 expression in stage 19 limb buds. Fz-10 is weakly expressed in the posterior region of the limb. (B) Distal view of Fz-10 (blue) and Shh (red) expression in stage 19 limb bud. Fz-10 expression in the posterior-dorsal mesenchyme partially overlaps with that of Shh, which is expressed in both the dorsal and ventral sides of posterior mesenchyme. (C,D) Dorsal (C) and distal (D) views of Fz-10 expression indicate its restricted expression in the posterior-dorsal mesenchyme in stage 21 limb bud. (E) Shh expression in stage 21 is restricted to posterior mesenchyme. (F) Distal view of stage 21 limb bud hybridized with both Fz-10 (blue) and Shh (red). Fz-10 transcripts clearly overlap with those of Shh only in the dorsal domain of the limb. (G) Dorsal view of stage 23 limb bud hybridized with both Fz-10 (blue) and Shh (red). At this stage, while Fz-10 overlaps with Shh in the distal posterior region, its expression expands distally. Probes used for in situ hybridization are indicated in each panel. In all panels, the anterior is to the top. (B,D,F) Arrowheads indicate the apical ectodermal ridge. D, dorsal; v, ventral.

Download figure to PowerPoint

Frizzled-10 interacts with Wnt-7a in the Xenopus embryo

Colocalization of Fz-10 and Shh transcripts in the posterior-dorsal limb suggested that Fz-10 acts as a receptor for Wnt-7a during chick limb development. In addition, the expression in the distal region also suggested that Fz-10 may act as a receptor for Wnt-3a. Therefore, we analyzed the possible interaction between Fz-10 and these two Wnts using Xenopus embryos. In the animal cap assay, Wnts have been shown to induce expression of Siamois and Xnr3 ( Brannon & Kimelman 1996; McKendry et al. 1997 ; Salic et al. 1997 ). Therefore, if Fz-10 can bind to Wnt-7a or Wnt-3a and transduce their signal, coexpression of both the ligand and the receptor would elevate both Siamois and Xnr3 expression in the animal cap assay. To test this possibility, we injected Wnt-7a, Wnt-3a and Fz-10 mRNA, alone or in combination, and analyzed Siamois and Xnr3 expression by RT-PCR. Co-injection of Wnt-7a RNA and Fz-10 RNA synergistically induced Siamois and Xnr3 expression ( Fig. 3A). The ratio of Siamois/EF1α in animal cap injected with both Wnt-7a and Fz-10 was 6.6-fold and 6.0-fold of single injection of Wnt-7a and Fz-10, respectively. The ratio of Xnr3/EF1α in animal cap injected with both Wnt-7a and Fz-10 was 4.0-fold and 5.6-fold of single injection of Wnt-7a and Fz-10, respectively ( Fig. 3B). In contrast, co-injection of Wnt-3a and Fz-10 did not induce Siamois or Xnr3 ( Fig. 3). These experiments were repeated three times with different doses and similar results were obtained. These results clearly demonstrate that Fz-10 can interact with Wnt-7a and transduce the signal to stimulate the responsive genes, as assayed in the Xenopus embryo.

image

Figure 3. Fz-10 can mediate Wnt-7a signaling in Xenopus embryos. (A) To test the interactions between Fz-10 and Wnts, RNA were injected into the animal pole of fertilized Xenopus embryos. Injected RNA were 0.5 ng of chick Wnt-7a, 0.5 ng of chick Wnt-3a, 0.5 ng of Fz-10 and 0.5 ng of lacZ RNA. They were injected alone or in combination as shown on the bottom of the figure. Emb (+) and RT (–) are positive and negative controls for estimating efficiency of cDNA synthesis and genomic DNA contamination, respectively. (B) Relative Siamois and Xnr3 expression was determined by normalizing with EF1α expression for each lane and is shown as a percentage. Co-injection of Wnt-7a and Fz-10 synergistically induced Siamois and Xnr3 expression.

Download figure to PowerPoint

Signal from the dorsal ectoderm is required for expression of Fz-10

In the chick limb bud, mesenchymal Fz-10 expression is possibly maintained by a signal emanating from the dorsal ectoderm as judged from its expression in the dorsal mesenchyme. To verify this possibility, we removed the dorsal ectoderm and examined the resulting Fz-10 expression. A slight reduction in Fz-10 expression was observed immediately after dorsal ectoderm removal ( Fig. 4A,B; n = 7 of 10), because Fz-10 is expressed in the dorsal ectoderm in addition to the posterior-dorsal mesenchyme. A reduction in Lmx1 expression was not observed (data not shown), confirming that our manipulation did not disturb the underlying tissue. At 12 h later, however, mesenchymal expression of Fz-10 was drastically decreased as compared with the 0 h control and with the contralateral limb bud of the same embryo ( Fig. 4B–D; n = 12 of 17). These results suggest that the signal from the dorsal ectoderm is implicated in the maintenance of mesenchymal Fz-10 expression.

image

Figure 4. Dorsal ectoderm is required for maintaining Fz-10 expression. (A,B) Dorsal view of Fz-10 expression immediately after removal of dorsal ectoderm. (C,D) Dorsal view of Fz-10 expression 12 h after dorsal ectoderm removal. The dorsal ectoderm was removed from the right wing bud (B,D) and the contralateral wing buds served as controls (A,C). Fz-10 expression was slightly reduced at 0 h owing to the removal of dorsal ectoderm (B), whereas at 12 h mesenchymal Fz-10 expression was further decreased (D vs B). (E,F) Distal– ventral view of Fz-10 expression 24 h after implanting Wnt-7a-expressing cells to the posterior ventral region of the limb bud. Ectopic Fz-10 expression (F) was induced in the posterior ventral area that is distal to the grafted cells, compared with the contralateral control limb (E). (G) Lmx1 was induced ventrally by grafting Wnt-7a-expressing cells, which is a control experiment for panels E and F. Arrowheads indicate grafted Wnt-7a-expressing cells.

Download figure to PowerPoint

The endogenous expression of Fz-10 in the dorsal region also suggested that signal from the dorsal ectoderm is involved in induction of Fz-10. The most likely candidate molecule for this is Wnt-7a. To test this, we implanted Wnt-7a-expressing cells to the posterior- distal region of the ventral side of the limb bud. We occasionally observed expression of Fz-10 on the ventral side ( Fig. 4E,F), which is not observed in the intact limb bud at this stage. However, expression was restricted to a small domain distal to the grafted cells. The control experiment, in which the limb bud was hybridized with Lmx1 probe after the grafting, indicated that grafted cells can induce genes downstream of Wnt-7a on the ventral side ( Fig. 4G). These experiments suggest that Wnt-7a is involved in induction of Fz-10, but another factor could be involved in this process.

Sonic hedgehog maintains Fz-10 expression in the posterior mesenchyme

To determine the role of Shh and the AER in the maintenance of Fz-10 expression in the posterior mesenchyme, we removed the posterior AER from the stage 20–21 limb bud. As reported previously, expression of Shh was downregulated shortly (6 h) after the manipulation ( Fig. 5A). We did not observe major change in the expression of Fz-10 at this time ( Fig. 5B). Fz-10 expression was downregulated 12 h after the AER removal ( Fig. 5D), when Shh expression was almost completely downregulated ( Fig. 5C). These results suggest that the downregulation of Fz-10 could occur due to loss of Shh expression, which precedes the downregulation of Fz-10 after AER removal. These experiments also indicate that the intact AER does not influence Fz-10 expression, because Fz-10 was not downregulated 6 h after the AER removal.

image

Figure 5. Maintenance and induction of Fz-10 expression by Shh. The posterior (post.) apical ectodermal ridge (AER) was removed surgically and the dorsal view of the expression patterns of Shh (A,C) and Fz-10 (B,D) were compared after 6 h (A,B) and 12 h (C,D). In each panel, the control left wing bud shows intact expression of Shh (A,C) and Fz-10 (B,D), whereas the right wing bud shows expression of Shh (A,C) and Fz-10 (B,D) after removal of the posterior AER. (E) Dorsal view of Fz-10 expression after 24 h of grafting Shh-expressing cells to the anterior (Ant.) margin of stage 20 limb bud. The left wing bud serves as a control. The arrows in panel E indicate ectopic expression of Fz-10.

Download figure to PowerPoint

Implanting Shh-expressing cells induced Fz-10 expression in the anterior region of the limb ( Fig. 5E) and maintained it in the dorsal side (Kawakami et al. 2000). These results suggest that both Shh and the signal from the dorsal ectoderm, presumably Wnt-7a, cooperate to induce and maintain Fz-10 expression in the dorsal region of posterior-distal limb mesenchyme.

Discussion

  1. Top of page
  2. Abstract
  3. Introduction
  4. Materials and Methods
  5. Results
  6. Discussion
  7. Acknowledgements
  8. References

Expression pattern of Fz-10 suggests involvement in Shh expression

A number of Wnt genes are differentially expressed during chick limb development ( Dealy et al. 1993 ; Kengaku et al. 1997 ; Kawakami et al. 1999 ; Hartmann & Tabin 2000). One of these, Wnt-7a, is expressed in the entire dorsal ectoderm ( Dealy et al. 1993 ) and plays two different roles, in dorsal–ventral patterning of the limb mesenchyme ( Parr & McMahon 1995), and maintenance of Shh expression in the ZPA ( Parr & McMahon 1995; Yang & Niswander 1995). However, it is still unknown how Wnt-7a exhibits these different activities. One possible explanation would be that two different receptors for Wnt-7a are expressed and mediate the activities independently. The identification of the Fz family as Wnt receptors has begun to unravel this question. Several members of the Fz family, including Fz-1, Fz-2, Fz-7 ( Kengaku et al. 1997 ; Hartmann & Tabin 2000), Fz-4, Fz-6 and Fz-10 ( Nohno et al. 1999 ; Kawakami et al. 2000), are expressed during chick limb development. Among them, Fz-10 is expressed in the posterior-dorsal mesenchyme in close proximity to the dorsal ectoderm where Wnt-7a is expressed ( Dealy et al. 1993 ; Parr et al. 1993 ). To transduce the Wnt signal properly, the Fz genes should be expressed adjacent to the Wnt-producing cells, because Wnt protein can be trapped easily by the extracellular matrix and not diffuse over a long distance ( Cadigan & Nusse 1997). Therefore, the expression pattern of Fz-10 raises the possibility that Fz-10 functions as a receptor for Wnt-7a in the limb bud. If Fz-10 acts to maintain Shh expression in the posterior mesenchyme, its transcripts should colocalize with those of Shh. To examine this possibility, we compared the spatial and temporal expression patterns of Fz-10 and Shh. The two-color in situ hybridization revealed that Fz-10 and Shh transcripts colocalize in the dorsal mesenchyme ( Fig. 2B,F,G). These expression patterns suggest that Fz-10 is involved in the pathway in which Wnt-7a maintains Shh expression in the dorsal mesenchyme.

Frizzled-10 can transduce Wnt-7a signaling in the Xenopus embryo

At stages 23–26, Fz-10 expression extends to the distal and anterior regions of limb buds (Kawakami et al. 2000). This suggests that Fz-10 may interact not only with Wnt-7a, but also with Wnt-3a, which is expressed in the AER. To analyze the interaction between Fz-10 and these Wnts, we used Xenopus embryos. The Siamois gene and Xnr3 gene are Wnt-responsive marker genes in the Xenopus animal pole ( Brannon & Kimelman 1996; McKendry et al. 1997 ; Salic et al. 1997 ). The synergistic effect on the activation of Siamois and Xnr3 expression by Wnt-7a and Fz-10 indicated that Fz-10 can act as a receptor for chick Wnt-7a, but not for chick Wnt-3a. This also suggests a possible specificity between Fz and Wnts.

Regulation of Fz-10 expression by signaling from the dorsal ectoderm and Shh

If Fz-10 is involved in the interaction between Wnt-7a and Shh in the limb bud, it may be regulated by these factors. The expression pattern of Fz-10 after removal of the dorsal ectoderm indicated that the dorsal ectoderm is necessary for the expression of Fz-10, because it was downregulated after the operation ( Fig. 4A–D). Fz-10 was also downregulated after removal of the posterior AER, suggesting that it is maintained by Shh ( Fig. 5A–D). Removal of posterior AER resulted in the rapid decrease of Shh expression, as previously reported ( Laufer et al. 1994 ; Niswander et al. 1994 ), which preceded downregulation of Fz-10. From these observations, Fz-10 appears to be maintained by Shh. However, signals from the AER are not involved in maintaining Fz-10 expression in the posterior mesenchyme. Therefore, two signaling centers, the dorsal ectoderm and the ZPA, regulate Fz-10 expression in the posterior mesenchyme in the limb bud.

The endogenous posterior expression of Fz-10 ( Fig. 2) and its ectopic expression in the anterior mesenchyme after Shh treatment ( Fig. 5E) indicate that Shh can induce Fz-10 expression. The expression of Fz-10 after grafting Wnt-7a-expressing cells to the ventral side of the posterior-distal region of the limb is restricted to the region where Shh is expressed. Therefore, it is likely that Shh and Wnt-7a in combination induce Fz-10 expression. This is further supported by the temporal expression patterns in the normal limb bud. Wnt-7a expression starts at stage 15 ( Riddle et al. 1995 ), Shh expression starts at stage 17 ( Riddle et al. 1993 ) and Fz-10 expression in the limb mesenchyme starts at stage 18 (Kawakami et al. 2000). In conclusion, Shh and a signal from the dorsal ectoderm, presumably Wnt-7a, appear to cooperatively act on induction and maintenance of Fz-10 expression in the dorsal region of posterior-distal mesenchyme.

Role of Fz-10 in limb patterning

The present studies provide evidence that Fz-10, in response to Wnt-7a, could positively influence Shh expression. This idea is also supported by the fact that Fz-10 expression colocalizes to regions where Shh is expressed and involved in the epithelial–mesenchymal interactions, such as the branchial arches and feather buds (Kawakami et al. 2000). Shh is thought to have an essential role in epithelial–mesenchymal interaction ( Nohno et al. 1995 ; Wall & Hogan 1995; Helms et al. 1997 ). Fz-10 may be involved in these epithelial– mesenchymal interactions, because several Wnt members and Shh show overlapping expression patterns in the branchial arch, feather bud and surface ectoderm ( Dealy et al. 1993 ; Chuong et al. 1996 ; St-Jacques et al. 1998 ). However, Fz-10 is not necessarily involved in dorsal–ventral patterning, because it is not expressed in the entire dorsal mesenchyme. This suggests that another Fz family member is involved in Wnt-7a signaling during dorsal–ventral patterning of the limb mesenchyme.

Acknowledgements

  1. Top of page
  2. Abstract
  3. Introduction
  4. Materials and Methods
  5. Results
  6. Discussion
  7. Acknowledgements
  8. References

We are grateful to C. Komaguchi and A. Shiga for technical assistance. We also appreciate the editorial assistance of J. K. Ng. This work was supported in part by Grants-in-Aid from the Japanese Ministry of Education, Science, Sports and Culture to T. N., Y. K. and N. W. and by Research Project Grants from Kawasaki Medical School to T. N.

References

  1. Top of page
  2. Abstract
  3. Introduction
  4. Materials and Methods
  5. Results
  6. Discussion
  7. Acknowledgements
  8. References
  • Bhanot, P., Brink, M., Samos, C. H. et al. 1996. A new member of the frizzled family from Drosophila functions as a Wingless receptor. Nature 382, 225 230.
  • Brannon, M. & Kimelman, D. 1996. Activation of Siamois by the Wnt pathway. Dev. Biol. 180, 344 347.DOI: 10.1006/dbio.1996.0306
  • Cadigan, K. M. & Nusse, R. 1997. Wnt signaling: A common theme in animal development. Genes Dev. 11, 3286 3305.
  • Chen, H., Lun, Y., Ovchinnikov, D. et al. 1998. Limb and kidney defects in Lmx1b mutant mice suggest an involvement of LMX1B in human nail patella syndrome. Nat. Genet. 19, 51 55.
  • Chiang, C., Litingtung, Y., Lee, E. et al. 1996. Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature 383, 407 413.
  • Chuong, C. M., Widelitz, R. B., Ting-Berreth, S., Jiang, T. X. 1996. Early events during avian skin appendage regeneration: Dependence on epithelial–mesenchymal interaction and order of molecular reappearance. J. Invest. Dermatol. 107, 639 646.
  • Dealy, C. N., Roth, A., Ferrari, D., Brown, A. M., Kosher, R. A. 1993. Wnt-5a and Wnt-7a are expressed in the developing chick limb bud in a manner suggesting roles in pattern formation along the proximodistal and dorsoventral axes. Mech. Dev. 43, 175 186.
  • Hamburger, V. & Hamilton, H. L. 1951. A series of normal stages in the development of the chick embryo. J. Morphol. 88, 49 92.
  • Hammerschmidt, M., Brook, A., McMahon, A. P. 1997. The world according to hedgehog. Trends Genet. 13, 14 21.DOI: 10.1016/s0168-9525(96)10051-2
  • Hartmann, C. & Tabin, C. J. 2000. Dual roles of Wnt signaling during chondrogenesis in the chicken limb. Development 127, 3141 3159.
  • Hauptmann, G. & Gerster, T. 1994. Two-color whole-mount in situ hybridization to vertebrate and Drosophila embryos. Trends Genet.10, 266.
  • He, X., Saint-Jaennet, J. P., Wang, Y., Nathans, J., Dawid, I., Varmus, H. 1997. A member of the Frizzled protein family mediating axis induction by Wnt- 5A. Science 275, 1652 1654.DOI: 10.1126/science.275.5306.1652
  • Helms, J. A., Kim, C. H., Hu, D., Minkoff, R., Thaller, C., Eichele, G. 1997. Sonic hedgehog participates in craniofacial morphogenesis and is down-regulated by teratogenic doses of retinoic acid. Dev. Biol. 187, 25 35.DOI: 10.1006/dbio.1997.8589
  • Johnson, R. L. & Tabin, C. J. 1997. Molecular models for vertebrate limb development. Cell 90, 979 990.
  • Kawakami, Y., Ishikawa, T., Shimabara, M. et al. 1996. BMP signaling during bone pattern determination in the developing limb. Development 122, 3557 3566.
  • Kawakami, Y., Wada, N., Nishimatsu, S. I., Ishikawa, T., Noji, S., Nohno, T. 1999. Involvement of Wnt-5a in chondrogenic pattern formation in the chick limb bud. Develop. Growth Differ. 41, 29 40.
  • Kawakami, Y., Wada, N., Nishimatsu, S., Komaguchi, C., Noji, S., Nohno, T. 2000. Identification of chick frizzled-10 expressed in the developing limb and the central nervous system. Mech. Dev. 91, 375 378.DOI: 10.1016/s0925-4773(99)00301-9
  • Kengaku, M., Twombly, V., Tabin, C. 1997. Expression of Wnt and Frizzled genes during chick limb bud development. Cold Spring Harbor Symp. Quant. Biol. 62, 421 429.
  • Laufer, E., Nelson, C. E., Johnson, R. L., Morgan, B. A., Tabin, C. 1994. Sonic hedgehog and Fgf-4 act through a signaling cascade and feedback loop to integrate growth and patterning of the developing limb bud. Cell 79, 993 1003.
  • Liu, X., Liu, T., Slusarski, D. C. et al. 1999. Activation of a frizzled-2/beta-adrenergic receptor chimera promotes wnt signaling and differentiation of mouse F9 teratocarcinoma cells via galphao and galphat. Proc. Natl Acad. Sci. USA 96, 14 383 14 388.
  • McKendry, R., Hsu, S. C., Harland, R. M., Grosschedl, R. 1997. LEF-1/TCF proteins mediate wnt-inducible transcription from the Xenopus nodal-related 3 promoter. Dev. Biol. 192, 420 431.DOI: 10.1006/dbio.1997.8797
  • Nishimatsu, S. & Thomsen, G. H. 1998. Ventral mesoderm induction and patterning by bone morphogenetic protein heterodimers in Xenopus embryos. Mech. Dev. 74, 75 88.DOI: 10.1016/s0925-4773(98)00070-7
  • Niswander, L., Jeffrey, S., Martin, G. R., Tickle, C. 1994. A positive feedback loop coordinates growth and patterning in the vertebrate limb. Nature 371, 609 612.
  • Nohno, T., Kawakami, Y., Ohuchi, H., Fujiwara, A., Yoshioka, H., Noji, S. 1995. Involvement of the Sonic hedgehog gene in chick feather formation. Biochem. Biophys. Res. Commun. 206, 33 39.DOI: 10.1006/bbrc.1995.1005
  • Nohno, T., Kawakami, Y., Wada, N., Ishikawa, T., Ohuchi, H., Noji, S. 1997. Differential expression of the two closely related LIM-class homeobox genes LH-2A and LH-2B during limb development. Biochem. Biophys. Res. Commun. 238, 506 511.DOI: 10.1006/bbrc.1997.7320
  • Nohno, T., Kawakami, Y., Wada, N., Komaguchi, C., Nishimatsu, S. 1999. Differential expression of the frizzled family involved in Wnt signaling during chick limb development. Cell. Mol. Biol. 45, 653 659.
  • Parr, B. A. & McMahon, A. P. 1995. Dorsalizing signal Wnt-7a required for normal polarity of D-V and A-P axes of mouse limb. Nature 374, 350 353.
  • Parr, B. A., Shea, M. J., Vassileva, G., McMahon, A. P. 1993. Mouse Wnt genes exhibit discrete domains of expression in the early embryonic CNS and limb buds. Development 119, 247 261.
  • Riddle, R. D., Ensini, M., Nelson, C., Tsuchida, T., Jessell, T. M., Tabin, C. 1995. Induction of the LIM homeobox gene Lmx1 by WNT7a establishes dorsoventral pattern in the vertebrate limb. Cell 83, 631 640.
  • Riddle, R. D., Johnson, R. L., Laufer, E., Tabin, C. 1993. Sonic hedgehog mediates the polarizing activity of the ZPA. Cell 75, 1401 1416.
  • Rocheleau, C. E., Downs, W. D., Lin, R. et al. 1997. Wnt signaling and an APC-related gene specify endoderm in early C. elegans embryos. Cell 90, 701 716.
  • Salic, A. N., Kroll, K. L., Evans, L. M., Kirschner, M. W. 1997. Sizzled: A secreted Xwnt8 antagonist expressed in the ventral marginal zone of Xenopus embryos. Development 124, 4739 4748.
  • St-Jacques, B., Dassule, H. R., Karavanova, I. et al. 1998. Sonic hedgehog signaling is essential for hair development. Curr. Biol. 8, 1058 1068.
  • Tanda, N., Kawakami, Y., Saito, T., Noji, S., Nohno, T. 1995. Cloning and characterization of Wnt-4 and Wnt-11 cDNAs from chick embryo. DNA Seq. 5, 277 281.
  • Tickle, C. & Eichele, G. 1994. Vertebrate limb development. Annu. Rev. Cell Biol. 10, 121 152.
  • Vogel, A., Rodriguez, C., Warnken, W., Izpisua-Belmonte, J. C. 1995. Dorsal cell fate specified by chick Lmx1 during vertebrate limb development. Nature 378, 716 720.
  • Wada, N., Kawakami, Y., Nohno, T. 1999. Sonic hedgehog signaling during digit pattern duplication after application of recombinant protein and expressing cells. Develop. Growth Differ. 41, 567 574.
  • Wall, N. A. & Hogan, B. L. 1995. Expression of bone morphogenetic protein-4 (BMP-4), bone morphogenetic protein-7 (BMP-7), fibroblast growth factor-8 (FGF-8) and sonic hedgehog (SHH) during branchial arch development in the chick. Mech. Dev. 53, 383 392.DOI: 10.1016/0925-4773(95)00453-x
  • Wilkinson, D. G. 1992. Whole-mount in situ hybridization of vertebrate embryos. In In Situ Hybridization (Ed. D. G. Wilkinson), pp. 75–83. IRL Press, Oxford.
  • Yang, Y. & Niswander, L. 1995. Interaction between the signaling molecules WNT7a and SHH during vertebrate limb development: Dorsal signals regulate anteroposterior patterning. Cell 80, 939 947.
  • Yang-Snyder, J., Miller, J. R., Brown, J. D., Lai, C-J., Moon, R. T. 1996. A frizzled homolog functions in a vertebrate Wnt signaling pathway. Curr. Biol. 6, 1302 1306.