SEARCH

SEARCH BY CITATION

REFERENCES

  • 1
    Jaeschke H, Farhood A, Smith CW. Neutrophils contribute to ischemia/reperfusion injury in rat liver in vivo. FASEB J. 1990; 4: 3355 9.
  • 2
    Jaeschke H & Farhood A. Neutrophil and Kupffer cell-induced oxidant stress and ischemia-reperfusion injury in rat liver in vivo. Am. J. Physiol. 1991; 260: G355 62.
  • 3
    Jaeschke H, Farhood A, Smith CW. Neutrophil-induced liver cell injury in endotoxin shock is a CD11b/CD18-dependent mechanism. Am. J. Physiol. 1991; 261: G1051 6.
  • 4
    Hewett JA, Schultze AE, Vancise S, Roth RA. Neutrophil depletion protects against liver injury from bacterial endotoxin. Lab. Invest. 1992; 66: 347 61.
  • 5
    Dohi F, Goya T, Torisu M. Potential role of hepatic macrophages in neutrophil-mediated liver injury in rats with sepsis. Hepatology 1993; 17: 1086 94.
  • 6
    Molnar RG, Wang P, Ayala A, Ganey PE, Roth RA, Chaudry IH. The role of neutrophils in producing hepatocellular dysfunction during the hyperdynamic stage of sepsis in rats. J. Surg. Res. 1997; 73: 117 22.
  • 7
    Bautista AP. Chronic alcohol intoxication induces hepatic injury through enhanced macrophage inflammatory protein-2 production and intercellular adhesion molecule-1 expression in the liver. Hepatology 1997; 25: 335 42.
  • 8
    Hill J, Lindsay T, Rusche J, Valeri D, Shepro D, Hechtman HB. A Mac-1 antibody reduces liver and lung injury but not neutrophil sequestration after intestinal ischemia-reperfusion. Surgery 1992; 112: 166 72.
  • 9
    Horie Y, Wolf R, Miyasaka M, Anderson DC, Granger DN. Leukocyte adhesion and hepatic microvascular responses to intestinal ischemia-reperfusion in rats. Gastroenterology 1996; 111: 666 73.
  • 10
    Bauer CS, Siaplouras S, Soule HR, Moyle M, Marzi I. A natural glycoprotein inhibitor (NIF) of CD11b/CD18 reduces leukocyte adhesion in the liver after hemorrhagic shock. Shock 1995; 4: 187 92.
  • 11
    Adamson GM & Billings RE. Tumor necrosis factor induced oxidative stress in isolated mouse hepatocytes. Arch. Biochem. Biophys. 1992; 294: 223 9.
  • 12
    Jaeschke H & Mitchell JR. Mitochondria and xanthine oxidase both generate reactive oxygen species after hypoxic damage in isolated perfused rat liver. Biochem. Biophys. Res. Commun. 1989; 160: 140 7.
  • 13
    Poli G, Cutrin JC, Biasi F. Lipid peroxidation in the reperfusion injury of the liver. Free Radic. Res. 1998; 28: 547 51.
  • 14
    Minotti G & Aust. SD. Redox cycling of iron and lipid peroxidation. Lipids 1992; 27: 219 26.
  • 15
    Jaeschke H. Reactive oxygen and ischemia/reperfusion injury of the liver. Chem. Biol. Interact. 1991; 79: 115 36.
  • 16
    Mathews WR, Guido DM, Fisher MA, Jaeschke H. Lipid peroxidation as molecular mechanism of liver cell injury during reperfusion after ischemia. Free Radic. Biol. Med. 1994; 16: 763 70.
  • 17
    Jaeschke H. Mechanisms of oxidant stress-induced acute tissue injury. Proc. Soc. Exp. Biol. Med. 1995; 209: 104 11.
  • 18
    Jaeschke H, Kleinwaechter C, Wendel A. NADH-dependent reductive stress and ferritin-bound iron in allyl alcohol-induced lipid peroxidation in vivo: the protective effect of vitamin E. Chem. Biol. Interact. 1992; 81: 57 68.
  • 19
    Curzio M, Esterbauer H, Di Mauro C, Cecchini G, Dianzani MU. Chemotactic activity of the lipid peroxidation product 4-hydroxynonenal and homologous hydroxyalkenals. Biol. Chem. Hoppe Seyler 1986; 367: 321 9.
  • 20
    Jayatilleke A & Shaw S. Stimulation of monocyte interleukin-8 by lipid peroxidation products: a mechanism for alcohol-induced liver injury. Alcohol 1998; 16: 119 23.
  • 21
    Wang Y, Mathews WR, Guido D, Jaeschke H. The 21-aminosteroid tirilazad mesylate protects against liver injury via membrane stabilization not inhibition of lipid peroxidation. J. Pharmacol. Exper. Ther. 1996; 277: 714 20.
  • 22
    Poli G & Parola M. Oxidative damage and fibrogenesis. Free Radic. Biol. Med. 1997; 22: 287 305.
  • 23
    Chojkier M, Houglum K, Lee KS, Buck M. Long- and short-term D-alpha-tocopherol supplementation inhibits liver collagen alpha 1 (I) gene expression. Am. J. Physiol. 1998; 275: G1480 5.
  • 24
    Mavier P, Preaux A-M, Guigui B, Lescs MC, Zafrani ES, Dhumeaux D. In vitro toxicity of polymorphonuclear neutrophils to rat hepatocytes: Evidence for a proteinase-mediated mechanism. Hepatology 1988; 8: 254 8.
  • 25
    Harbrecht BG, Biliar TR, Curran RD, Stadler J, Simmons RL. Hepatocyte injury by activated neutrophils in vitro is mediated by proteases. Ann. Surg 1993; 218: 120 8.
  • 26
    Ganey PE, Bailie MB, VanCise S, Madhukar BV, Robinson JP, Roth RA. Activated neutrophils from rat injured isolated hepatocytes. Lab. Invest. 1994; 70: 53 60.
  • 27
    Oka Y, Murata A, Nishijima J, Ogawa M, Mori T. The mechanism of hepatic cellular injury in sepsis: an in vitro study of the implications of cytokines and neutrophils in its pathogenesis. J. Surg. Res. 1993; 55: 1 8.
  • 28
    Li XK, Matin AFM, Suzuki H, Uno T, Yamaguchi T, Harada Y. Effect of protease inhibitor on ischemia-reperfusion injury of the rat liver. Transplantation 1993; 56: 1331 6.
  • 29
    Weiss SJ. Tissue destruction by neutrophils. N. Engl. J. Med. 1989; 320: 365 76.
  • 30
    Jaeschke H, Ho Y-S, Fisher MA, Lawson JA, Farhood A. Glutathione peroxidase-deficient mice are more susceptible to neutrophil-mediated hepatic parenchymal cell injury during endotoxaemia: importance of an intracellular oxidant stress. Hepatology 1999; 29: 443 50.
  • 31
    Chosay JG, Essani NA, Dunn CJ, Jaeschke H. Neutrophil margination and extravasation in sinusoids and venules of the liver during endotoxin-induced injury. Am. J. Physiol. 1997; 272: G1195 200.
  • 32
    Jaeschke H, Farhood A, Bautista AP, Spolarics Z, Spitzer JJ, Smith CW. Functional inactivation of neutrophils with a Mac-1 (CD11b/CD18) monoclonal antibody protects against ischemia-reperfusion injury in rat liver. Hepatology 1993; 17: 915 23.
  • 33
    Shappell SB, Toman C, Anderson DC, Taylor AA, Entman ML, Smith CW. Mac-1 (CD11b/CD18) mediates adherence-dependent hydrogen peroxide production by human and canine neutrophils. J. Immunol. 1990; 144: 2702 11.
  • 34
    Jaeschke H. Cellular adhesion molecules: regulation and functional significance in the pathogenesis of liver diseases. Am. J. Physiol. 1997; 273: G602 11.
  • 35
    Lawson JA, Fisher MA, Simmons CA, Farhood A, Jaeschke H. Parenchymal cell apoptosis as a signal for sinusoidal sequestration and transendothelial migration of neutrophils in murine models of endotoxin and Fas antibody-induced liver injury. Hepatology 1998; 28: 761 7.
  • 36
    Maroushek-Boury N & Czuprynski CJ. Listeria monocytogenes infection increases neutrophil adhesion and damage to a murine hepatocyte cell line in vitro. Immunol. Lett 1995; 46: 111 16.
  • 37
    Nagendra AR, Mickelson JK, Smith CW. CD18 integrin and intercellular adhesion molecule-1 (CD54)-dependent neutrophil adhesion to cytokine-stimulated human hepatocytes. Am. J. Physiol. 1997; 272: G408 16.
  • 38
    Bilzer M, Jaeschke H, Vollmar AM, Paumgartner G, Gerbes AL. Prevention of Kupffer cell-induced oxidant injury in rat liver by atrial natriuretic peptide. Am. J. Physiol. 1999; 276: G1137 44.
  • 39
    Bilzer M, Witthaut R, Paumgartner G, Gerbes AL. Prevention of ischemia/reperfusion injury in the rat liver by atrial natriuretic peptide. Gastroenterology 1994; 106: 143 51.
  • 40
    Gerbes AL, Vollmar AM, Kiemer AK, Bilzer M. The guanylate cyclase-coupled natriuretic peptide receptor: a new target for prevention of cold ischemia-reperfusion damage of the rat liver. Hepatology 1998; 28: 1309 17.
  • 41
    Von Ruecker AA, Wild M, Rao GS, Bidlingmaier F. Atrial natriuretic peptide protects hepatocytes against damage induced by hypoxia and reactive oxygen: possible role of intracellular free ionized calcium. J. Clin. Chem. Clin. Biochem. 1989; 27: 531 7.
  • 42
    Nieminen AL, Saylor AK, Tesfai SA, Herman B, Lemasters JJ. Contribution of the membrane permeability transition to lethal injury after exposure of hepatocytes to t-butylhydroperoxide. Biochem. J. 1995; 307: 99 106.
  • 43
    Nieminen AL, Byrne AM, Herman B, Lemasters JJ. Mitochondrial permeability transition in hepatocytes induced by t-BuOOH–NAD(P)H and reactive oxygen species. Am. J. Physiol. 1997; 272: C1286 94.
  • 44
    Byrne AM, Lemasters JJ, Nieminen AL. Contribution of increased mitochondrial free Ca2+ to the mitochondrial permeability transition induced by tert-butylhydroperoxide in rat hepatocytes. Hepatology 1999; 29: 1523 31.
  • 45
    Aguilar HI, Botla R, Arora AS, Bronk SF, Gores GJ. Induction of the mitochondrial permeability transition by protease activity in rats: a mechanism of hepatocyte necrosis. Gastroenterology 1996; 110: 558 66.
  • 46
    Miyoshi H, Umeshita K, Sakon M et al. Calpain activation in plasma membrane bleb formation during tert-butyl hydroperoxide-induced rat hepatocyte injury. Gastroenterology 1996; 110: 1897 904.
  • 47
    Jaeschke H. Antioxidant defence mechanisms. In: McCuskey RS, Earnest DL, eds. Comprehensive Toxicology, Vol. IX. Oxford: Elsevier, 1997; 181 97.
  • 48
    Spolarics Z. Endotoxaemia, pentose cycle, and the oxidant/antioxidant balance in the hepatic sinusoid. J. Leukocyte Biol. 1998; 63: 534 41.
  • 49
    Jaeschke H. Enhanced sinusoidal glutathione efflux during endotoxin-induced oxidant stress in vivo. Am. J. Physiol. 1992; 263: G60 8.
  • 50
    Liu P, Fisher MA, Farhood A, Smith CW, Jaeschke H. Beneficial effects of extracellular glutathione against endotoxin-induced liver injury during ischemia and reperfusion. Circ. Shock 1994; 43: 64 70.
  • 51
    Bilzer M & Lauterburg BH. Oxidant stress and potentiation of ischemia-reperfusion injury to the perfused rat liver by human polymorphonuclear leukocytes. J. Hepatol. 1994; 20: 473 7.
  • 52
    Wang Y, Fisher MA, Jaeschke H. Detoxification of Kupffer cell-derived reactive oxygen and reactive nitrogen species by plasma glutathione during hepatic ischemia-reperfusion. In: Wisse E, Knook DL, Balabaud C, eds. Cells of the Hepatic Sinusoid, Vol. 6. Leiden: Kupffer Cell Foundation, 1997; 205 6.
  • 53
    Jaeschke H. Vascular oxidant stress and hepatic ischemia-reperfusion injury. Free Radic. Res. Commun. 1991; 12–13: 737 43.
  • 54
    Bilzer M, Paumgartner G, Gerbes AL. Glutathione protects the rat liver against reperfusion injury after hypothermic preservation. Gastroenterology 1999; 117: 200 10.
  • 55
    Bulkley GB. Free radicals and other reactive metabolites: clinical relevance and the therapeutic efficacy of antioxidant therapy. Surgery 1993; 113: 479 83.
  • 56
    Schewe T. Molecular actions of ebselen – an antiinflammatory antioxidant. Gen. Pharmacol. 1995; 26: 1153 69.
  • 57
    Conner EM & Grisham MB. Inflammation, free radicals, and antioxidants. Nutrition 1996; 12: 274 7.
  • 58
    Spapen H, Zhang H, Vincent JL. Potential therapeutic value of lazaroids in endotoxaemia and other forms of sepsis. Shock 1997; 8: 321 7.
  • 59
    Schreck R, Albermann K, Baeuerle PA. Nuclear factor kappa B: an oxidative stress-responsive transcription factor of eukaryotic cells. Free Rad. Res. Commun. 1992; 17: 221 37.
  • 60
    Li X & Karin M. Is NF-κB the sensor of oxidative stress? FASEB J. 1999; 13: 1137 43.
  • 61
    Bellezzo JM, Leingang KA, Bulla GA, Britton RS, Bacon BR, Fox ES. Modulation of lipopolysaccharide-mediated activation of rat Kupffer cells by antioxidants. J. Lab. Clin. Med. 1998; 131: 36 44.
  • 62
    Essani NA, Fisher MA, Jaeschke H. Inhibition of NF-κB activation by dimethyl sulfoxide correlates with suppression of TNF-α formation, reduced ICAM-1 gene transcription and protection against endotoxin-induced liver injury. Shock 1997; 7: 90 6.
  • 63
    Le Moine O, Louis H, Stordeur P, Collet JM, Goldman M, Deviere J. Role of reactive oxygen intermediates in interleukin-10 release after cold liver ischemia and reperfusion in mice. Gastroenterology 1997; 113: 1701 6.
  • 64
    Dong W, Simeonova PP, Gallucci R et al. Cytokine expression in hepatocytes: role of oxidant stress. J. Interferon Cytokine Res. 1998; 18: 629 38.
  • 65
    Pannen BHJ, Köhler N, Hole B, Bauer M, Clemens MG, Geiger KK. Protective role of endogenous carbon monoxide in hepatic microcirculatory dysfunction after hemorrhagic shock in rats. J. Clin. Invest. 1998; 102: 1220 8.
  • 66
    Rensing H, Bauer I, Peters I et al. Role of reactive oxygen species for hepatocellular injury and heme oxygenase-1 gene expression following hemorrhage and resuscitation. Shock 1999; 12: 300 8.
  • 67
    Rensing H, Bauer I, Jaeschke H, Bauer M. Comparative role of antioxidants for modulation of AP-1 and NF-κB and their role for heme oxygenase-1 gene expression in the liver after hemorrhagic shock. Shock 1999; 11 (Suppl.): 62 (Abstract).
  • 68
    Vischer UM, Jornot L, Wollheim CB, Theler JM. Reactive oxygen intermediates induce regulated secretion of van Willebrand factor from cultured human vascular endothelial cells. Blood 1995; 85: 3164 72.
  • 69
    Sawaya Jr DE, Zibari GB, Minardi A et al. P-selectin contributes to the initial recruitment of rolling and adherent leukocytes in hepatic venules after ischemia-reperfusion. Shock 1999; 12: 227 32.
  • 70
    Essani NA, Fisher MA, Simmons CA, Hoover JL, Farhood A, Jaeschke H. Increased P-selectin gene expression in the liver vasculature and its role in the pathophysiology of neutrophil-induced liver injury in murine endotoxin shock. J. Leukocyte Biol. 1998; 63: 288 96.
  • 71
    Thimgan MS & Yee Jr HF. Quantitation of rat hepatic stellate cell contraction: stellate cells’ contribution to sinusoidal resistance. Am. J. Physiol. 1999; 277: G137 43.
  • 72
    Suematsu M, Goda N, Sano T et al. Carbon monoxide: an endogenous modulator of sinusoidal tone in the perfused rat liver. J. Clin. Invest. 1995; 96: 2431 7.
  • 73
    Kaplowitz N & Tsukamoto H. Oxidative stress and liver disease. In: Boyer JL, Ockner RK, eds. Progress in Liver Diseases, Vol. 14. Philadelphia: W.B. Saunders, 1996; 131 59.
  • 74
    Garcia-Trevijano ER, Iraburu MJ, Fontana L et al. Transforming growth factor beta 1 induces the expression of alpha 1 (I) procollagen mRNA by a hydrogen peroxide-C/EBPbeta-dependent mechanism in rat hepatic stellate cells. Hepatology 1999; 29: 960 70.
  • 75
    Xu Y, Rojkind M, Czaja MJ. Regulation of monocyte chemoattractant protein 1 by cytokines and oxygen free radicals in rat hepatic fat-storing cells. Gastroenterology 1996; 110: 1870 7.
  • 76
    Zychlinsky A & Sansonetti PJ. Apoptosis as a proinflammatory event: what can we learn from bacteria-induced cell death? Trends Microbiol. 1997; 5: 201 4.
  • 77
    Jaeschke H, Fisher MA, Lawson JA, Simmons CA, Farhood A, Jones DA. Activation of caspase 3 (CPP32)-like proteases is essential for TNF-α-induced hepatic parenchymal cell apoptosis and neutrophil-mediated necrosis in a murine endotoxin shock model. J. Immunol. 1998; 160: 3480 6.
  • 78
    Sarafian TA & Bredesen DE. Is apoptosis mediated by reactive oxygen species? Free Rad. Res. 1994; 21: 1 8.
  • 79
    Kurose I, Higuchi H, Miura S et al. Oxidative stress-mediated apoptosis of hepatocytes exposed to acute ethanol intoxication. Hepatology 1997; 25: 368 78.
  • 80
    Sanchez A, Alvarez AM, Benito M, Fabregat I. Apoptosis induced by transforming growth factor-α in fetal hepatocyte primary cultures: involvement of reactive oxygen intermediates. J. Biol. Chem. 1996; 27: 7416 22.
  • 81
    Rauen U, Polzar B, Stephan H, Mannherz HG, De Groot H. Cold-induced apoptosis in cultured hepatocytes and liver endothelial cells: mediation by reactive oxygen species. FASEB J. 1999; 13: 155 68.
  • 82
    Motoyama S, Minamiya Y, Saito S et al. Hydrogen peroxide derived from hepatocytes induces sinusoidal endothelial cell apoptosis in perfused hypoxic rat liver. Gastroenterology 1998; 114: 153 63.
  • 83
    Lemasters JJ, Nieminen AL, Qian T et al. The mitochondrial permeability transition in cell death: a common mechanism in necrosis, apoptosis and autophagy. Biochim. Biophys. Acta 1998; 1366: 177 96.
  • 84
    Nagata S. Apoptosis by death factor. Cell 1997; 88: 355 65.
  • 85
    Hampton MG & Orrenius S. Dual regulation of caspase activity by hydrogen peroxide: implications for apoptosis. FEBS Lett. 1997; 414: 552 6.
  • 86
    Fadeel B, Ahlin A, Henter JI, Orrenius S, Hampton MB. Involvement of caspases in neutrophil apoptosis: regulation by reactive oxygen species. Blood 1998; 92: 4808 18.