• 1
    Baylin SB, Herman JG, Graff JR, Vertino PM, Issa JP. Alterations in DNA methylation: a fundamental aspect of neoplasia. Adv. Cancer Res. 1998; 72: 14196.
  • 2
    Bird AP. The relationship of DNA methylation to cancer. Cancer Surv. 1996; 28: 87101.
  • 3
    Zingg JM & Jones PA. Genetic and epigenetic aspects of DNA methylation on genome expression, mutation and carcinogenesis. Carcinogenesis 1997; 18: 86982.
  • 4
    Baylin SB. Tying it all together: Epigenetics, genetics, cell cycle and cancer. Science 1997; 277: 19489.
  • 5
    Bestor TH & Verdine GL. DNA methyltranferases. Curr. Opin. Cell Biol. 1994; 6: 3809.
  • 6
    Okano M, Bell DW, Haber DA, Li E. DNA methyltransferases DNMT3a and DNMT3b are essential for de novo methylation and mammalian development. Cell 1999; 99: 24757.
  • 7
    Nan X, Ng HH, Johnson CA et al. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 1998; 393: 3869.
  • 8
    Jones PL, Veenstra GJ, Wade PA et al. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nature Genet. 1998; 19: 18791.
  • 9
    Bird AP. CpG-rich island and the function of DNA methylation. Nature 1986; 32: 20913.
  • 10
    Holliday R. The inheritance of epigenetic defects. Science 1987; 238: 16370.
  • 11
    Herman JG, Latif F, Weng Y et al. Silencing of the VHL tumor-suppressor gene by DNA methylation in renal carcinoma. Proc. Natl Acad. Sci. USA 1994; 91: 970040.
  • 12
    Herman JG, Merlo A, Mao L et al. Inactivation of the CDKN2/p16/mts1 gene is frequently associated with aberrant DNA methylation in all common human cancers. Cancer Res. 1995; 55: 452530.
  • 13
    Herman JG, Umar A, Polyak K et al. Incidence and functional consequences of hMLH1 promoter hypermethylation in colorectal carcinoma. Proc. Natl Acad. Sci. USA 1998; 95: 68705.
  • 14
    Veigl ML, Kasturi L, Olechnowicz J et al. Biallelic inactivation of hMLH1 by epigenetic gene silencing, a novel mechanism causing human MSI cancers. Proc. Natl Acad. Sci. USA 1998; 95: 8698702.
  • 15
    Shen JC, Rideout III WM, Jones PA. High mutagenesis by a DNA methyltransferase. Cell 1992; 71: 107380.
  • 16
    Yang AS, Shen JC, Zingg JM, Mi S, Jones PA. HhaI and HpaII DNA methyltransferases bind DNA mismatches, methylate uracil and block DNA repair. Nucl. Acids Res. 1995; 23: 13807.
  • 17
    Antequera F, Boyes J, Bird A. High levels of de novo methylation and altered chromatin structure at CpG islands in cell lines. Cell 1990; 62: 50314.
  • 18
    Herman JG, Jen J, Merlo A, Baylin SB. Hypermethylation-associated inactivation indicates a tumor suppressor role for p15ink4b1 Cancer Res. 1996; 56: 7227.
  • 19
    Kanai Y, Ushijima S, Hui AM et al. The E-cadherin gene is silenced by CpG methylation in human hepatocellular carcinomas. Int. J. Cancer 1997; 71: 3559.
  • 20
    Yoshiura K, Kanai Y, Ochiai A, Shimoyama Y, Sugimura T, Hirohashi S. Silencing of the E-cadherin invasion-suppressor gene by CpG methylation in human carcinomas. Proc. Natl Acad. Sci. USA 1995; 92: 741619.
  • 21
    Kanai Y, Ushijima S, Tsuda H, Sakamoto M, Sugimura T, Hirohashi S. Aberrant DNA methylation on chromosome 16 is an early event in hepatocarcinogenesis. Jan. J. Cancer Res. 1996; 87: 121017.
  • 22
    Eguchi K, Kanai Y, Kobayashi K, Hirohashi S. DNA hypermethylation at the D17S5 locus in non-small cell lung cancers: its association with smoking history. Cancer Res. 1997; 57: 491315.
  • 23
    Vachtenheim J, Horakova I, Novotna H. Hypomethylation of CCGG sites in the 3′region of H-ras protooncogene is frequent and is associated with H-ras allelic loss in non-small cell lung cancer. Cancer Res. 1994; 54: 11458.
  • 24
    Wu J, Issa JPJ, Herman JG et al. Expression of an exogenous eukaryotic DNA methyltransferase gene induces transformation of NIH 3T3 cells. Proc. Natl Acad. Sci. USA 1993; 90: 88915.
  • 25
    Beranek DT, Weis CC, Swenson DH. A comprehensive quantitative analysis of methylated and ethylated DNA using high pressure liquid chromatography. Carcinogenesis 1980; 1: 595606.
  • 26
    Wainfan E, Dizik M, Stender M, Christman JK. Methyl group in carcinogenesis: Effects on DNA methylation and gene expression. Cancer Res. 1992; 52: 20717.
  • 27
    Kessler C, Neumaier PS, Wolf W. Recognition sequences of restriction endonucleases and methylases-a review. Gene 1985; 33: 1102.
  • 28
    Clark SJ, Harrison J, Paul CL, Frommer M. High sensitivity mapping of methylated cytosines. Nucl. Acids Res. 1994; 22: 29907.
  • 29
    Herman JG, Graff JR, Myohanen S, Nelkin BD, Baylin SB. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc. Natl Acad. Sci. USA 1996; 93: 98216.
  • 30
    Gonzalgo ML & Jones PA. Rapid quantitation of methylation differences at specific sites using methylation-sensitive single nucleotide primer extension (Ms-SNuPE). Nucl. Acids Res. 1997; 25: 252931.
  • 31
    Xiong Z & Laird PW. COBRA: a sensitive and quantitative DNA methylation assay. Nucl. Acids Res. 1997; 25: 25324.
  • 32
    Huang TH, Perry MR, Laux DE. Methylation profiling of CpG islands in human breast cancer cells. Hum. Mol. Genet. 1999; 8: 45970.
  • 33
    Wainfan E, Dizik M, Stender M, Christman JK. Rapid appearance of hypomethylation DNA in livers of rats fed cancer-promoting methyl-deficient diets. Cancer Res. 1989; 49: 40948.
  • 34
    Cravo ML, Mason JB, Dayal Y et al. Folate deficiency enhances the development of colonic neoplasia in dimethyl hydrazine-treated rats. Cancer Res. 1992; 52: 50026.
  • 35
    Sawady J, Friedman MI, Katzin WE, Mendelsohn G. Role of transitional mucosa of the colon in differentiating primary adenocarcinoma from carcinomas metastatic to the colon. An immunohistochemical study. Am. J. Surg. Pathol. 1991; 15: 13644.
  • 36
    Fang JY, Zhu SS, Xiao SD et al. Alteration of level of total genomic DNA methylation and pattern of c-myc, c-Ha-ras oncogenes methylation in human gastric cancerogenesis. Chin. Med. J. 1996; 109: 78791.
  • 37
    Qiu DK, Shen LL, Fang JY. Change of total genomic DNA methylation in human hepatocellular carcinoma. Chin. J. Dig. 1997; 17: 1757.
  • 38
    Rao PM, Antony A, Rajalakshmi S, Sarma DS. Studies on hypomethylation of liver DNA during early stages of chemical carcinogenesis in rat liver. Carcinogenesis 1989; 10: 9337.
  • 39
    Nambu S, Inoue K, Sasaki H. Site-specific hypomethylation of the c-myc oncogene in human hepatocellular carcinoma. Jan. J. Cancer 1987; 73: 695704.
  • 40
    Choi EK, Uyeno S, Nishida N et al. Alterations of c-fos gene methylation in the processes of aging and tumorigenesis in human liver. Mutat. Res. 1996; 354: 1238.
  • 41
    Peng SY, Lai PL, Chu JS et al. Expression of and hypomethylation of α-fetoprotein gene in unicentric and multicentric human hepatocellular carcinomas. Hepatology 1993; 17: 3541.
  • 42
    Fang JY, Zhu SS, Xiao SD et al. Studies on the hypomethylation of c-myc, c-Ha-ras oncogenes and histopathological changes in human gastric carcinoma. J. Gastroenterol. Hepatol. 1996; 11: 107982.
  • 43
    Shen LL, Fang JY, Qiu DK et al. Correlation between DNA methylation and pathological changes in human hepatocellular carcinoma. Hepatogastroenterology 1998; 45: 17539.
  • 44
    Balaghi M & Wagner C. DNA methylation in folate deficiency: Use of CpG methylase. Biochem. Biophys. Res. Comm. 1993; 193: 118490.
  • 45
    Fang JY, Xiao SD, Zhu SS, Yuan JM, Qiu DK, Jiang SJ. Relationship of plasma folic acid and status of DNA methylation in human gastric cancer. J. Gastroenterol. 1997; 32: 1715.
  • 46
    Serrano M, Hannon GJ, Beach D. A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature 1993; 366: 7047.
  • 47
    Xiong Y, Zhang H, Beach D. Subunit rearrangement of the cyclin-dependent kinases is associated with cellular transformation. Genes Dev. 1993; 7: 157283.
  • 48
    Serrano M, Gomez-Lahoz E, DePinho RA, Beach D, Bar-Sagi D. Inhibition of ras-induced proliferation and cellular transformation by p16ink4. Science 1995; 267: 24952.
  • 49
    Hannon GJ & Beach D. p15INK4B is a potential effector of TGF-β-induced cell cycle arrest. Nature 1994; 371: 25761.
  • 50
    Maesawa C, Tamura G, Nishizuka S et al. Inactivation of the CDKN2 gene by homozygous deletion and de novo methylation is associated with advanced stage esophageal squamous cell carcinoma. Cancer Res. 1996; 56: 38758.
  • 51
    Tanaka H, Shimada Y, Imamura M, Shibagaki I, Ishizaki K. Multiple type of aberrations in the p16 (INK4A) and the p15 (INK4B) genes in 30 esophageal squamous cell carcinoma cell lines. Int. J. Cancer 1997; 70: 43742.
  • 52
    Merlo A, Herman JG, Mao L et al. 5′-CpG island methylation is associated with transcriptional silencing of the tumor suppressor p16/CDKN2/MTS1 in human cancers. Nat. Med. 1995; 1: 68692.
  • 53
    Lee YY, Kang SH, Seo JY et al. Alterations of p16INK4A and p15INK4B genes in gastric carcinomas. Cancer 1997; 80: 188996.
  • 54
    Toyota M, Ohe-Toyota M, Ahuja N, Issa JP. Distinct genetic profiles in colorectal tumors with or without the CpG island methylator phenotype. Proc. Natl Acad. Sci. USA 2000; 97: 71015.
  • 55
    Rocco JW & Didransky D. p16 (MTS-, 1/CDKN, 2/INK. 4a) in cancer progression. Exp. Cell Res. 2001; 264: 4255.
  • 56
    Shin JY, Kim HS, Park J, Park JB, Lee JY. Mechanism for inactivation of the KIP family cyclin-dependent kinase inhibitor genes in gastric cancer cells. Cancer Res. 2000; 60: 2625.
  • 57
    Angelo M, Marzo D, Marchi VL et al. Abnormal regulation of DNA methyltransferase expression during colorectal carcinogenesis. Cancer Res. 1999; 59: 385560.
  • 58
    Wong IH, Lo YM, Zhang J et al. Detection of aberrant p16 methylation in the plasma and serum of liver cancer patients. Cancer Res. 1999; 59: 713.
  • 59
    Saito Y, Kanai Y, Sakamoto M, Saito H, Ishii H, Hisohashi S. Expression of mRNA for DNA methyltransferases and methyl-CpG-binding proteins and DNA methylation status on CpG islands and pericentromeric satellite regions during human hepatocarcinogenesis. Hepatology 2001; 33: 5618.
  • 60
    Kaneto H, Sasaki S, Yamamoto H et al. Detection of hypermethylation of the p16 (INK4A) gene promoter in chronic hepatitis and cirrhosis associated with hepatitis B or C virus. Gut 2001; 48: 3727.
  • 61
    Kanai Y, Hui AM, Sun L et al. DNA hypermethylation at the D17S5 locus and reduced HIC-1 mRNA expression are associated with hepatocarcinogenesis. Hepatology 1999; 29: 7039.
  • 62
    Kanai Y, Ushijima S, Ochiai A, Eguchi K, Hui A, Hirohashi S. DNA hypermethylation at the D17S5 locus is associated with gastric carcinogenesis. Cancer Lett. 1998; 122: 13541.
  • 63
    Mansouri A, Spurr N, Goodfellow PN, Kemler R. Characterization and chromosomal location of the gene encoding the human cell adhesion molecule uvomorulin. Differentiation 1988; 38: 116570.
  • 64
    Thiou JA, Ilyas M, Mortensen NJ, Bodmer WF. Hypermethylation of the promoter region of the E-cadherin gene (CDH1) in sporadic and ulcerative colitis associated colorectal cancer. Gut 2001; 48: 36771.
  • 65
    Sozzi G, Tornielli S, Tagliabue E et al. Absence of Fhit protein in primary lung tumors and cell lines with FHIT gene abnormalities. Cancer Res. 1997; 57: 520712.
  • 66
    Greenspan DL, Connolly DC, Wu R et al. Loss of FHIT expression in cervical carcinoma cell lines and primary tumor. Cancer Res. 1997; 57: 46928.
  • 67
    Tanaka H, Shimada Y, Harada H et al. Methylation of the 5′CpG island of the FHIT gene is closely associated with transcriptional inactivation in esophageal squamous cell carcinomas. Cancer Res. 1998; 58: 342934.
  • 68
    Bachman KE, Herman JG, Corn PG et al. Methylation-associated silencing of the tissue inhibitor of metalloproteinase-3 gene suggests a suppressor role in kidney, brain, and other human cancers. Cancer Res. 1999; 59: 798802.
  • 69
    Otori K, Konishi M, Sugiyama K et al. Infrequent somatic mutation of the adenomatous polyposis coli gene in aberrant crypt foci of human colonic tissue. Cancer 1998; 83: 896900.
  • 70
    Sakamoto Y, Kitazawa R, Maeda S, Kitazawa S. Methylation of CpG loci in 5′-flanking region alters steady-state expression of adenomatous polyposis coli gene in colonic cancer cell lines. J. Cell Biochem. 2001; 80: 41523.
  • 71
    Moller P, Koretz K, Leithauser F et al. Expression of APO-1 (CD95), a member of the NGF/TNF receptor superfamily, in normal and neoplastic colonic epithelium. Int. J. Cancer 1994; 57: 3717.
  • 72
    Butler LM, Dobrovic A, Bianco T, Cowled PA. Promoter region methylation does not account for the frequent loss of expression of the Fas gene in colorectal carcinoma. Br. J. Cancer 2000; 82: 1315.
  • 73
    Eberhart CE, Coffey RJ, Radhika A, Giardiello FM, Ferrenbach S, DuBois RN. Up-regulation of cyclooxygenase 2 gene expression in human colorectal adenomas and adenocarcinomas. Gastroenterology 1994; 107: 11838.
  • 74
    Ristimaki A, Honkanen N, Jankala H, Sipponen P, Harkonen M. Expression of cyclooxygenase-2 in human gastric carcinoma. Cancer Res. 1997; 57: 127680.
  • 75
    KarnesJrWE, Shattuck-Brandt R, Burgart LJ et al. Reduced COX2 protein in colorectal cancer with defective mismatch repair. Cancer Res. 1998; 58: 54737.
  • 76
    Sinicrope FA, Lemoine M, Xi L et al. Reduced expression of cyclooxygenase 2 proteins in hereditary nonpolyposis colorectal cancers relative to sporadic cancers. Gastroenterology 1999; 117: 3508.
  • 77
    Toyota M, Shen L, Ohe-Toyota M, Hamilton SR, Sinicrope FA, Issa JPJ. Aberrant methylation of the cyclooxygenase 2 CpG island in colorectal tumors. Cancer Res. 2000; 60: 40448.
  • 78
    Kane MF, Loda M, Gaida GM et al. Methylation of the hMLH1 promoter correlates with lack of expression of hMLH1 in sporadic colon tumors and mismatch repair-defective human tumor cell lines. Cancer Res. 1997; 57: 80811.
  • 79
    Bronner CE, Baker SM, Morrison PT et al. Mutation in DNA mismatch repair gene homologue hMLH1 is associated with hereditary non-polyposis colonic cancer. Nature 1994; 368: 25861.
  • 80
    Deng G, Chen A, Hong J, Chae HS, Kim YS. Methylation of CpG in a small region of the hMLH1 promoter invariably correlates with the absence of gene expression. Cancer Res. 1999; 59: 202933.
  • 81
    Papadopoulos N, Nicolaides NC, Wei YF et al. Mutation of a mutL homolog in hereditary colonic cancer. Science 1994; 263: 16259.
  • 82
    Aaltonen LA, Peltomaki P, Mecklin JP et al. Replication errors in benign and malignant tumors from hereditary non-polyposis colorectal cancer patients. Cancer Res. 1994; 54: 16458.
  • 83
    Aaltonen LA, Peltomaki P, Leach FS et al. Clues to the pathogenesis of familial colorectal cancer. Science 1993; 260: 81216.
  • 84
    Lengauer C, Kinzler KW, Vogelstein B. DNA methylation and genetic instability in colorectal cancer cells. Proc. Natl Acad. Sci. USA 1997; 94: 254550.
  • 85
    Ahuja N, Mohan AL, Li Q et al. Association between CpG island methylation and microsatellite instability in colorectal cancer. Cancer Res. 1997; 57: 33704.
  • 86
    Hayden JD, Cawkwell L, Quirke P et al. Prognostic significance of microsatellite instability in patients with gastric carcinoma. Eur. J. Cancer 1997; 33: 23426.
  • 87
    Wu MS, Lee CW, Shun CT et al. Clinicopathological significance of altered loci of replication error and microsatellite instability-associated mutations in gastric cancer. Cancer Res. 1998; 58: 14947.
  • 88
    Leung SY, Yuen ST, Chung LP et al. Microsatellite instability, Epstein-Barr virus, mutation of type II transforming growth factor β receptor and BAX in gastric carcinomas in Hong Kong Chinese. Br. J. Cancer 1999; 79: 5828.
  • 89
    Leung SY, Yuen ST, Chung LP, Chu KM, Chan AS, Ho JC. hMLH1 promoter methylation and lack of hMLH1 expression in sporadic gastric carcinomas with high-frequency microsatellite instability. Cancer Res. 1999; 59: 15964.
  • 90
    Yangisawa Y, Akiyawa Y, Iida S et al. Methylation of the hMLH1 promoter in familial gastric cancer with microsatellite instability. Int. J. Cancer 2000; 85: 503.
  • 91
    Toyota M, Ahuja N, Suzuki H et al. Aberrant methylation in gastric cancer associated with the CpG island methylator phenotype. Cancer Res. 1999; 59: 543842.
  • 92
    Jones PA. Gene activation by 5-azacytidine. In: RazinA, CedarH, RiggsAD, eds. DNA Methylation Biochemistry and Biological Significance New York: Springer-Verlag, 1984: 165.
  • 93
    Cox R & Goorha S. A study of the mechanism of selenite- induced hypomethylated DNA and differentiation of Friend erythroleukemic cells. Carcinogenesis 1986; 7: 201518.
  • 94
    Cox R. Selenite: a good inhibitor of rat liver DNA methylase. Biochem. Int. 1985; 10: 639.
  • 95
    Fiala ES, Staretz ME, Pandya GA, El-Bayoumy K, Hamilton SR. Inhibition of DNA cytosine methyltransferase by chemopreventive selenium compounds, determined by an improved assay for DNA cytosine methyltransferase and DNA cytosine methylation. Carcinogenesis 1998; 19: 597604.
  • 96
    Cravo ML, Pinto AG, Chaves P et al. Effect of folate supplementation on DNA methylation of rectal mucosa in patients with colonic adenomas: correlation with nutrient intake. Clin. Nutr. 1998; 17: 459.
  • 97
    Freudenheim JL, Graham S, Marshall JR, Haughey BP, Cholewinski S, Wilkinson G. Folate intake and carcinogenesis of the colon and rectum. Int. J. Epidemiol. 1991; 20: 36874.
  • 98
    Giovannucci E, Stampfer MJ, Colditz GA et al. Folate, methionine, and alcohol intake and risk of colorectal adenoma. J. Natl Cancer Inst. 1993; 85: 87584.
  • 99
    Choi SW & Mason JB. Folate and carcinogenesis: an integrated scheme. J. Nutr. 2000; 130: 12932.
  • 100
    Xu M, Kladde MP, Van Etten JL, Simpson RT. Cloning, characterization and expression of the gene coding for a cytosine-5-DNA methyltransferase recognizing GpC. Nucl. Acids Res. 1998; 26: 39616.
  • 101
    Pradhan S, Cummings M, Roberts RJ, Adams RL. Isolation, characterization and baculovirus-mediated expression of the cDNA encoding cytosine DNA methyltransferase from Pisum sativum. Nucl. Acids Res. 1998; 26: 121422.
  • 102
    Tscherne JS, Nurse K, Popienick P, Michel H, Sochacki M, Ofengand J. Purification, cloning, and characterization of the 16S RNA m5C967 methylatransferase from Escherichia coli. Biochemistry 1999; 38: 188492.
  • 103
    Mikovits JA, Young HA, Vertino P et al. Infection with human immunodeficiency virus type 1 upregulates DNA methyltransferase, resulting in de novo methylation of the gamma interferon (IFN-gamma) promoter and subsequent downregulation of IFN-gamma production. Mol. Cell. Biol. 1998; 18: 516677.
  • 104
    Nass SJ, Ferguson AT, El-Ashry D, Nelson WG, Davidson NE. Expression of DNA methyl-transferase (DMT) and the cell cycle in human breast cancer cells. Oncogene 1999; 18: 745361.
  • 105
    Strahl BD & Allis D. The language of covalent histone modifications. Nature 2000; 403: 415.
  • 106
    Wade PA & Wolffe AP. Histone acetyltransferases in control. Curr. Biol. 1997; 7: R824.
  • 107
    Struhl K. Histone acetylation and transcriptional regulatory mechanisms. Genes Dev. 1998; 12: 599606.