• 1
    Iseki E, Kosaka K, Kato M. Psychogeriatric outpatient clinic: A field report. Clin. Psychiatry 1995; 37: 833836 (in Japanese).
  • 2
    Kosaka K. Recent problems in dementias of the elderly. Jpn J. Psychiatry 1997; 2: 211216 (in Japanese).
  • 3
    Tohgi H, Abe T, Kimura M et al. Cerebrospinal fluid acetylcholine and choline in vascular dementia of Binswanger and multiple samll infarct type as compared with Alzheimer-type dementia. J. Neural Transm. 1996; 103: 12111220.
  • 4
    Yasuda M, Maeda K, Kakigi T et al. Low cerebrospinal fluid concentrations of peptide histidine valine and somatostatine-28 in Alzheimer’s disease: Altered processing of prepro-vasoactive intestinal peptide and prepro-somatostatine. Neuropeptides 1995; 29: 325 330.
  • 5
    Yamada K, Kono K, Umegaki H et al. Decreased interleukin-6 level in the cerebrospinal fluid of patients with Alzheimer-type dementia. Neurosci. Lett. 1995; 186: 219221.
  • 6
    Kosaka T, Imagawa M, Seki K et al. The β APP717 Alzheimer mutation increases the percentage of plasma amyloid β protein ending at Aß42(43). Neurology 1996; 48: 741745.
  • 7
    Tamaoka A, Fukushima T, Sawamura N et al. Amyloid β protein in plasma from patients with sporadic Alzheimer’s disease. J. Neurol. Sci. 1996; 151: 6568.
  • 8
    Matsubara E, Hirai S, Amari M. α1-antichymotrypsin as a possible biochemical marker for Alzheimer-type dementia. Ann. Neurol. 1990; 28: 561567.
  • 9
    Yoshiiwa A, Kamino K, Yamamoto H et al. α1-antichymotrypsin as a risk modifier for late-onset Alzheimer’s disease in Japanese apolipoprotein E ɛ 4 allele carriers. Ann. Neurol. 1997; 42: 115117.
  • 10
    Mori M, Hosoda K, Matsubara E et al. Tau in cerebrospinal fluid: Establishment of the sandwich ELISA with antibody specific to the repeat sequence in tau. Neurosci. Lett. 1995; 186: 181183.
  • 11
    Arai H, Terajima M, Miura M et al. Tau in cerebrospinal fluid: A potential diagnostic marker in Alzheimer’s disease. Ann. Neurol. 1995; 38: 649652.
  • 12
    Terajima M, Arai H, Itabashi S et al. Elevated cerebrospinal fluid tau: Implications for early diagnosis of Alzheimer’s disease. J. Am. Geriatr. Soc. 1996; 44: 10121013.
  • 13
    Isoe K, Urakami K, Shimomura T et al. Tau proteins in cerebrospinal fluid from patients with Alzheimer’s disease: A longitudinal study. Dementia 1996; 7: 175176.
  • 14
    Urakami K, Sato K, Okada A et al. Cu, Zn superoxide dismutase in patients with dementia of the Alzheimer type. Acta Neurol. Scand. 1995; 91: 165168.
  • 15
    Shimohara S, Fujimoto S, Matsushima H et al. Alteration of phospholipase C-δ protein level and specific activity in Alzheimer’s disease. J. Neurochem. 1995; 64: 26292634.
  • 16
    Matsushima H, Shimohara S, Fujimoto S et al. Changes in platelet phospholipase C protein level and activity in Alzheimer’s disease. Neurobiol. Aging 1995; 16: 895900.
  • 17
    Arai H, Terajima M, Nakagawa T et al. Pupil dilatation assay by tropicamide is modulated by apolipoprotein E ɛ 4 allele dosage in Alzheimer’s disease. Neuroreport 1996; 7: 918920.
  • 18
    Arai H, Nakagawa T, Kosaka Y et al. Biological markers for the clinical diagnosis of Alzheimer’s disease. Adv. Neurol. Sci. 1997; 41: 130139 (in Japanese).
  • 19
    Ishii T & Haga S. Immuno-electron microscopic localization of immunoglobulins in amyloid fibrils of senile plaques. Acta Neuropathol. 1976; 36: 243249.
  • 20
    Ishi T & Haga S. Immuno-electron microscopic localization of complements in amyloid fibrils of senile plaques. Acta Neuropathol. 1984; 63: 296300.
  • 21
    Kitamoto T, Ogomori K, Tateishi J et al. Formic acid pre-treatment enhances immunostaining of cerebral and systemic amyloidosis. Lab. Invest. 1988; 57: 230 236.
  • 22
    Yamaguchi H, Hirai S, Morimatsu M et al. Diffuse type of senile plaques in the brains of Alzheimer-type dementia. Acta Neuropathol. 1988; 77: 113119.
  • 23
    Yamaguchi H, Nakazato Y, Hirai S et al. Electron micrograph of diffuse plaques: Initial stage of senile plaque formation in the Alzheimer type. Am. J. Pathol. 1989; 135: 593597.
  • 24
    Yamaguchi H, Nakazato Y, Hirai S et al. Immunoelectron microscopic localization of amyloid β protein in the diffuse plaques of the Alzheimer-type dementia. Brain Res. 1990; 508: 320324.
  • 25
    Yamaguchi H, Nakazato Y, Shoji M et al. Ultrastructure of diffuse plaques in senile dementia of the Alzheimer type: Comparison with primitive plaques. Acta Neuropathol. 1991; 82: 1320.
  • 26
    Ikeda K, Haga C, Kosaka K et al. Light and electron microscopic observation of diffuse plaques and its related conditions. In: Nagatsu T, Fisher A, Yoshida M (eds) Clinical and Therapeutic Aspects of Alzheimer’s and Parkinson’s Diseases, vol. 1. Plenum Press, New York, 1990; 95–99.
  • 27
    Yamaguchi M, Haga C, Hirai S et al. Distinctive, rapid, and easy labeling of diffuse plaques in the Alzheimer brain by a new methenamine silver stain. Acta Neuropathol. 1990; 79: 569572.
  • 28
    Haga C, Ikeda K, Iwabuchi K et al. Detection of neurofibrillary tangles by the methenamine-silver method: Comparison with other silver stains and with immunostaining methods. Neuropathology 1993; 13: 137142.
  • 29
    Kondoh H, Matsushita M, Kosaka K et al. Staining senile plaques using Bodian’s method modified with methenamine. Biotech. Histochem. 1993; 68: 113116.
  • 30
    Kosaka K, Haga C, Ikeda K. Distribution and density of various types of amyloid deposits in cerebral cortex of Alzheimer-type dementia patients and non-demented subjects. In: Ishii T, Allsop D, Selkoe DJ (eds) Frontiers of Alzheimer Research. Excepta Medica, Amsterdam, 1991; 109–122.
  • 31
    Iseki E, Matsushita M, Kosaka K et al. Distribution and morphology of brain stem plaques in Alzheimer’s disease. Acta Neuropathol. 1989; 78: 131136.
  • 32
    Tsuchiya K & Kosaka K. Neuropathological study of the amygdala in presenile Alzheimer’s disease. J. Neurosci. 1990; 100: 165173.
  • 33
    Yoshimura M, Mizutani T, Yamanouchi H et al. Distribution and frequency of the subcortical senile plaques in senile dementia of Alzheimer-type. Neurol. Med. 1992; 36: 457470 (in Japanese).
  • 34
    Uchihara T, Kondo H, Akiyama H et al. White matter amyloid in Alzheimer’s disease brain. Acta Neuropathol. 1993; 90: 5156.
  • 35
    Iwamoto N, Nishiyama E, Ohwada J et al. Distribution of amyloid deposits in the cerebral white matter of the Alzheimer’s disease brain: Relationship to blood vessels. Acta Neuropathol. 1997; 93: 334340.
  • 36
    Miyakawa T, Shimoji A, Kuramoto R et al. The relationship between senile plaques and blood vessels in Alzheimer’s disease and senile dementia. Virchows Arch. 1982; 40: 121129.
  • 37
    Iwatsubo T, Odaka A, Suzuki N et al. Visualization of Aß42 (43) and Aß40 in plaques with endo-specific Aß monoclonals: Evidence that an initially deposited species is Aß 42(43). Neuron 1994; 13: 45 53.
  • 38
    Fukumoto H, Asami-Odaka A, Suzuki N et al. Amyloid β protein deposition in normal aging has the same characteristics as that in Alzheimer’s disease. Am. J. Pathol. 1996; 148: 259265.
  • 39
    Takamatsu J, Kimura T, Kondo A et al. Subpial amyloid plaques in the cerebellum in a case of Alzheimer’s disease. Dement. Geriatr. Cogn. Disord. 1996; 8: 157162.
  • 40
    Itoh Y, Yamada M, Hayakawa M et al. Subpial β/A4 peptide deposits are closely associated with amyloid angiopathy in the elderly. Neurosci. Lett. 1993; 155: 144147.
  • 41
    Akiyama H, Schwab C, Kondo H et al. Granules in glial cells of patients with Alzheimer’s disease are immunopositive for C-terminal sequences of β-amyloid protein. Neurosci. Lett. 1996; 206: 169172.
  • 42
    Ueda K, Fukushima H, Masliah E et al. Molecular cloning of cDNA encoding an unrecognized component of amyloid in Alzheimer disease. Proc. Natl Acad. Sci. USA 1993; 90: 11 28211 286.
  • 43
    Iwai A, Masliah E, Yoshimoto M et al. The precursor protein of non-Aß component of Alzheimer’s disease amyloid is a presynaptic protein of the central nervous system. Neuron 1995; 14: 467475.
  • 44
    Namba Y, Tomonaga M, Kawasaki H et al. Apolipoprotein E immunoreactivity in cerebral amyloid deposits and neurofibrillary tangles in Alzheimer’s disease and kuru plaque amyloid in Creutzfeldt–Jakob disease. Brain Res. 1991; 541: 163166.
  • 45
    Yamaguchi H, Ishiguro K, Sugihara S et al. Presence of ApoE on extracellular neurofibrillary tangles and on meningial vessls precedes the Alzheimer β-amyloid deposition. Acta Neuropathol. 1994; 88: 413419.
  • 46
    Nishiyama E, Iwamoto N, Ohwada J et al. Distribution of apolipoprotein E in senile plaques in brains with Alzheimer’s disease: Investigation with the confocal laser scan microscope. Brain Res. 1997; 750: 2024.
  • 47
    Iseki E, Odawara T, Kosaka K et al. Examination of regional order of occurrence of neurofibrillary tangles on the basis of developmental types. Dementia 1993; 7: 268273.
  • 48
    Ikeda K, Haga C, Oyanagi S et al. Ultrastructural and immunohistochemical study of degenerate neurite-bearing ghost tangles. J. Neurol. 1992; 239: 191194.
  • 49
    Ikeda K, Haga C, Akiyama H et al. Coexistence of paired helical filaments and glial tangles in astrocytic processes within ghost tangles. Neurosci. Lett. 1992; 148: 126128.
  • 50
    Wakabayashi K, Hansen LA, Vincent I et al. Neurofibrillary tangles in the dentate granule cells of patients with Alzheimer’s disease, Lewy body disease and progressive supranuclear palsy. Acta Neuropathol. 1997; 93: 712.
  • 51
    Umahara T, Hirano A, Shibata N et al. Demonstration of neurofibrillary tangles in the indusium griseum and of axonal disturbances in sagittal sulcal lesions of the corpus callosum: An immunohistochemical investigation. Neuropathology 1996; 16: 1014.
  • 52
    Ohara K, Takauchi S, Miyoshi K et al. A morphometric study of subcortical neurofibrillary tangles in Alzheimer’s disease. Neuropathology 1996; 16: 231 238.
  • 53
    Itoh Y, Amano N, Inoue M et al. Scanning electron microscopical study of the neurofibrillary tangles of Alzheimer’s disease. Acta Neuropathol. 1997; 94: 7886.
  • 54
    Ihara Y. Massive somatodendritic sprouting of cortical neurons in Alzheiemr’s disease. Brain Res. 1988; 459: 138144.
  • 55
    Ikeda K, Haga C, Kosaka K. Observation of neurofibrillary change in the brain of Alzheiemr-type dementia by Gallyas electron microscope method, with special reference to neuropil threads. Dementia 1991; 5: 344350.
  • 56
    Iwatsubo T, Hasegawa M, Esaki Y et al. Lack of ubiquitin immunoreactivities at both ends of neuropil threads. Am. J. Pathol. 1992; 140: 277282.
  • 57
    Satou T, Cummings BJ, Cotman CW. Immunoreactivity for Bcl-2 protein within neurons in the Alzheimer’s disease brain increases with disease severity. Brain Res. 1995; 697: 3543.
  • 58
    Nishimura T, Akiyama H, Yonehara S et al. Fas antigen expression in brains of patients with Alzheimer-type dementia. Brain Res. 1995; 695: 137145.
  • 59
    Akiyama H. Inflammatory response in Alzheimer’s disease. Tohoku J. Exp. Med. 1994; 174: 295303.
  • 60
    Terai K, Matsuo A, McGeer PL. Enhancement of immunoreactivity for NF-κB in the hippocampal formation and cerebral cortex of Alzheimer’s disease. Brain Res. 1996; 735: 159168.
  • 61
    Yasuhara O, Matsuo A, Terai K et al. Expression of interleukin-1 receptor antagonist protein in post mortem human brain tissues of Alzheimer’s disease and control cases. Acta Neuropathol. 1997; 93: 414420.
  • 62
    Akiyama H, Ikeda K, Katoh M et al. Expression of MRP14, 27E10, interferon-α and leukocytes common antigen by reactive microglia in postmortem human brain tissue. J. Neuroimmunol. 1994; 50: 195201.
  • 63
    Inoue M, Yagishita S, Itoh Y et al. Eosinophilic bodies in the cerebral cortex of Alzheimer’s disease cases. Acta Neuropathol. 1996; 92: 555561.
  • 64
    Iseki E, Odawara T, Kosaka K et al. Evaluation of neuropathological stages based on quantification of senile changes in non-demented elderly individuals and Alzheimer-type dementia. Neuropathology 1993; 13: 147152.
  • 65
    Mizutani T. Pathological diagnosis of Alzheimer-type dementia for old-old and oldest-old patients. Pathol. Int. 1996; 46: 842854.
  • 66
    Mizutani T, Amano N, Mukai M et al. Diagnostic study on pathological confirmation of Alzheimer-type dementia: Establishment of new diagnostic criteria. Adv. Neurol. Sci. 1997; 41: 141153 (in Japanese).
  • 67
    Mizutani T & Kasahara M. Hippocampal atrophy secondary to entorhinal cortical degeneration in Alzheimer-type dementia. Neurosci. Lett. 1997; 222: 119122.
  • 68
    Uchihara T, Kondo H, Kosaka K et al. Selective loss of nigral neurons in Alzheimer’s disease: A morphometric study. Acta Neuropathol. 1992; 83: 271276.
  • 69
    Uchihara T, Kondo H, Ikeda K et al. Alzheimer-type pathology in melanin-bleached sections of substantia nigra. J. Neurol. 1995; 242: 485489.
  • 70
    Yamada T, Kawata M, Arai H et al. Astroglial localization of cholesteryl ester transfer protein in normal and Alzheimer’s disease brain tissues. Acta Neuropathol. 1995; 90: 633636.
  • 71
    Kato M, Iseki E, Kosaka K et al. SDAT (occipital subtype) showing marked psychotic symptoms and dilatation of posterior horns of lateral ventricles. Clin. Psychiatry 1997; 39: 8183 (in Japanese).
  • 72
    Yamada M, Itoh Y, Suematsu N et al. Vascular variant of Alzheimer’s disease characterized by severe plaque-like β protein angiopathy. Dement. Geriatr. Cogn. Disord. 1997; 8: 163168.
  • 73
    Koshimura K, Kato T, Tohyama I et al. Qualitative abnormalities of choline acetyltransferase in Alzheimer type dementia. J. Neurol. Sci. 1986; 76: 143150.
  • 74
    Arai H, Kosaka K, Iizuka R. Changes of biogenic amines and their metabolites in postmortem brains from patients with Alzheimer-type dementia. J. Neurochem. 1984; 43: 388393.
  • 75
    Tanaka K, Ogawa N, Asanuma M et al. Chronic administration of acetylcholinesterase inhibitor in the senescent rat brain. Neurobiol. Aging 1994; 15: 721725.
  • 76
    Nanri M, Kasahara N, Yamamoto J et al. GTS-21, a nicotinic agonist, protects against neocortical neuronal cell loss induced by the nucleus basalis magnocellularis lesion in rats. Jpn J. Pharmacol. 1997; 74: 285289.
  • 77
    Ohkura T, Isse K, Akazawa K et al. Long-term estrogen replacement therapy in female patients with dementia of the Alzheimer type: 7 case reports. Dementia 1995; 5: 99107.
  • 78
    Mimori Y, Nakamura S, Yukawa M. Abnormalities of acetyl-cholinesterase in Alzheimer’s disease with special reference to effect of acetylcholinesterase inhibitor. Behav. Brain Res. 1997; 83: 2530.
  • 79
    Irie T, Fukushi K, Namba H et al. Brain acetylcholinesterase activity: Validation of a PET tracer in a rat model of Alzheimer’s disease. J. Nucl. Med. 1996; 37: 649655.
  • 80
    Iyo M, Namba H, Fukushi K et al. Measurement of acetylcholinesterase by positron emission tomography in the brain of healtly controls and patients with Alzheimer’s disease. Lancet 1997; 549: 18051809.
  • 81
    Kumashiro S, Hashimoto A, Nishikawa T. Free D-serine in postmortem brains and spinal cords of individuals with and without neuropsychiatric disease. Brain Res. 1995; 681: 117125.
  • 82
    Nagata Y, Borghi M, Fisher GH et al. Free D-serine concentration in normal and Alzheimer human brain. Brain Res. Bull. 1995; 38: 181183.
  • 83
    Kitaguchi N, Takahashi Y, Tokushima Y et al. Novel precursor of Alzheimer’s disease amyloid protein shows protease inhibitory activity. Nature 1988; 331: 530532.
  • 84
    Nukina N & Ihara Y. One of the antigenic determinants of paired helical filaments is related to tau protein. J. Biochem. 1986; 99: 15411544.
  • 85
    Nishimura T, Hariguchi S, Tada M et al. Changes in water-soluble brain protein in normal and abnormal ageing. In: Hirano A, Miyoshi K (eds) Neuropsychiatric Diorders in the Elderly. Igakushoin, Tokyo, 1983; 79–84.
  • 86
    Hayashi Y, Kashiwagi K, Nakajima M et al. Alzheimer amyloid protein precursor proliferation of neural stem cells from fetal rat brain. Biochem. Biophys. Res. Commun. 1994; 205: 936943.
  • 87
    Shoji M, Kawarabayashi T, Sato M et al. Systemic over-expression of a c-terminal fragment of human amyloid beta-protein precursor causes accumulation of Alzheimer beta-protein fibrils in pancreas of transgenic mice. Gerontology 1996; 42 (Suppl. 1): 4856.
  • 88
    Sato M, Kawarabayashi T, Shoji M et al. Neurodegeneration and gliosis on transgenic mice overexpressing a carboxyl-terminal fragment of Alzheimer amyloid-β protein precursor. Dement. Geriatr. Cogn. Disord. 1997; 8: 296307.
  • 89
    Ueki A, Kawano M, Namba Y et al. A high frequency of apolipoprotein E4 allele and the risk of Alzheimer’s disease in late-onset nonfamilial Alzheimer’s disease. Neurosci. Lett. 1993; 163: 166168.
  • 90
    Isoe K, Urakami K, Sano K et al. Apolipoprotein E in patients with dementia of the Alzheimer type and vascular dementia. Acta Neurol. Scand. 1996; 93: 133137.
  • 91
    Itoh Y, Yamada M, Suematsu N et al. Influence of apolipoprotein E genotype on cerebral amyloid angiopathy in the elderly. Stroke 1996; 27: 216218.
  • 92
    Nakai M, Kawamata T, Taniguchi T et al. Expression of apolipoprotein E mRNA in rat microglia. Neurosci. Lett. 1996; 211: 4144.
  • 93
    Tanahashi H, Kawakatsu S, Kaneko M et al. Sequence analysis of presenilin-1 gene mutation in Japanese Alzheimer’s disease patients. Neurosci. Lett. 1996; 218: 139141.
  • 94
    Suzuki T, Nishiyama K, Murayama S et al. Regional and cellular presenilin 1 gene expression in human and rat tissues. Biochem. Biophys. Res. Comm. 1996; 219: 708713.
  • 95
    Takashima A, Satoh M, Macken M et al. Localization of Alzheimer-associated presenilin 1 in transfected COS-7 cells. Biochem. Biophys. Res. Commun. 1996; 227: 423426.
  • 96
    Macken M, Takahashi H, Sato K et al. Characterization of human presenilin 1 using n-terminal specific monoclonal antibodies: Evidence that Alzheimer mutations affect proteolytic processing. FEBS Lett. 1996; 389: 297303.
  • 97
    Murayama O, Honda T, Mecken M et al. Different effects of Alzheimer-associated mutations of presenilin 1 on its processing. Neurosci. Lett. 1997; 229: 6164.
  • 98
    Waragai M, Imafuku I, Takeuchi S et al. Presenilin 1 binds to amyloid precursor protein directly. Biochem. Biophys. Res. Commun. 1997; 239: 480482.
  • 99
    Tomita T, Maruyama K, Saido T et al. The presenilin 2 mutation (N141I) linked to familial Alzheimer disease (Volga German families) increases the secretion of amyloid β protein ending at the 42nd (or 43rd) residue. Proc. Natl Acad. Sci. USA. 1997; 94: 20252030.