• 1
    Lee LY, Pisarri TE. Afferent properties and reflex functions of bronchopulmonary C-fibers. Respir. Physiol. 2001; 125: 4765.
  • 2
    Coleridge HM, Coleridge JC. Afferent nerves in the airways. In: BarnesPJ (ed.) Autonomic Control of the Respiratory System. Harwood, Amsterdam, 1997; 3958.
  • 3
    Coleridge HM, Coleridge JC, Schultz HD. Afferent pathways involved in reflex regulation of airway smooth muscle. Pharmacol. Ther. 1989; 42: 163.
  • 4
    Coleridge JC, Coleridge HM. Afferent vagal C-fibre innervation of the lungs and airways and its functional significance. Rev. Physiol. Biochem. Pharmacol. 1984; 99: 1110.
  • 5
    Widdicombe JG. Nervous receptors in the respiratory tract and lungs. In: HornbeinTF (ed.) Regulation of Breathing. Dekker, New York, 1981; 42972.
  • 6
    Widdicombe JG. Sensory innervation of the lungs and airways. Prog. Brain Res. 1986; 67: 4964.
  • 7
    Erlanger J, Gasser HS. The compound action potential as disclosed by the cathode ray oscillograph. Am. J. Physiol. 1924; 147: 62466.
  • 8
    Duclaux R, Mei N, Ranieri F. Conduction velocity along the afferent vagal dendrites: a new type of fibre. J. Physiol. 1976; 260: 48795.
  • 9
    Davies RO, Kubin L. Projection of pulmonary rapidly adapting receptors to the medulla of the cat: an antidromic mapping study. J. Physiol. 1986; 373: 6386.
  • 10
    Harper AA, Lawson SN. Conduction velocity is related to morphological cell type in rat dorsal root ganglion neurones. J. Physiol. 1985; 359: 3146.
  • 11
    Fyffe REW. Afferent fibres. In: DavidoffRA (ed.) Handbook of the Spinal Cord. Anatomy and Physiology. Dekker, New York, 1983; 79136.
  • 12
    Yaksh TL, Hammond DL. Peripheral and central substrates involved in the rostrad transmission of nociceptive information. Pain 1982; 13: 185.
  • 13
    Riccio MM, Kummer W, Biglari B, Myers AC, Undem BJ. Interganglionic segregation of distinct vagal afferent fibre phenotypes in guinea-pig airways. J. Physiol. 1996; 496: 52130.
  • 14
    Lundblad L, Lundberg JM, Brodin E, Anggard A. Origin and distribution of capsaicin-sensitive substance P-immunoreactive nerves in the nasal mucosa. Acta Otolaryngol. 1983; 96: 48593.
  • 15
    Anggard A, Lundberg JM, Lundblad L. Nasal autonomic innervation with special reference to peptidergic nerves. Eur J. Respir. Dis. Suppl. 1983; 128: 1439.
  • 16
    Kummer W, Fischer A, Kurkowski R, Heym C. The sensory and sympathetic innervation of guinea-pig lung and trachea as studied by retrograde neuronal tracing and double-labelling immunohistochemistry. Neuroscience 1992; 49: 715– 37.
  • 17
    Saria A, Martling CR, Dalsgaard CJ, Lundberg JM. Evidence for substance P-immunoreactive spinal afferents that mediate bronchoconstriction. Acta Physiol. Scand. 1985; 125: 40714.
  • 18
    Paintal AS. Vagal sensory receptors and their reflex effects. Physiol. Rev. 1973; 53: 159227.
  • 19
    D’Amico-Martel A, Noden DM. Contributions of placodal and neural crest cells to avian cranial peripheral ganglia. Am. J. Anat. 1983; 166: 44568.
  • 20
    Baker CV, Bronner-Fraser M. Vertebrate cranial placodes I. Embryonic induction. Dev. Biol. 2001; 232: 161.
  • 21
    Ho CY, Gu Q, Lin YS, Lee LY. Sensitivity of vagal afferent endings to chemical irritants in the rat lung. Respir Physiol. 2001; 127: 11324.
  • 22
    Davies RO, Kubin L, Pack AI. Pulmonary stretch receptor relay neurones of the cat: location and contralateral medullary projections. J. Physiol. 1987: 383: 57185.
  • 23
    McAlexander MA, Myers AC, Undem BJ. Adaptation of guinea-pig vagal airway afferent neurones to mechanical stimulation. J. Physiol. 1999; 521: 23947.
  • 24
    Iggo A. Sensory receptors in the skin of mammals and their sensory functions. Rev. Neurol. (Paris) 1985; 141: 599613.
  • 25
    Darian-Smith I. The sense of touch: performance and peripharial neural processes. In: MountcastleVB (ed.) Handbook of Physiology. American Physiology Society,Washington DC, 1984; 73988.
  • 26
    Darian-Smith I. Thermal sensibility. In: MountcastleVB (ed.) Handbook of Physiology. American Physiology Society,Washington DC, 1984; 879913.
  • 27
    Petruska JC, Cooper BY, Gu JG, Rau KK, Johnson RD. Distribution of P2X1, P2X2, and P2X3 receptor subunits in rat primary afferents: relation to population markers and specific cell types. J. Chem. Neuroanat. 2000; 20: 14162.
  • 28
    Petruska JC, Napaporn J, Johnson RD, Cooper BY. Chemical responsiveness and histochemical phenotype of electrophysiologically classified cells of the adult rat dorsal root ganglion. Neuroscience 2002; 115: 1530.
  • 29
    Zhuo H, Ichikawa H, Helke CJ. Neurochemistry of the nodose ganglion. Prog. Neurobiol. 1997; 52: 79107.
  • 30
    Christian EP, Togo J, Naper KE. Guinea pig visceral C-fiber neurons are diverse with respect to the K+ currents involved in action-potential repolarization. J. Neurophysiol. 1994; 71: 56174.
  • 31
    Christian EP, Togo JA. Excitable properties and underlying Na+ and K+ currents in neurons from the guinea-pig jugular ganglion. J. Auton. Nerv. Syst. 1995; 56: 7586.
  • 32
    Pedersen KE, Meeker SN, Riccio MM, Undem BJ. Selective stimulation of jugular ganglion afferent neurons in guinea pig airways by hypertonic saline. J. Appl. Physiol. 1998; 84: 499506.
  • 33
    Haxhiu MA, Yamamoto B, Dreshaj IA, Bedol D, Ferguson DG. Involvement of glutamate in transmission of afferent constrictive inputs from the airways to the nucleus tractus solitarius in ferrets. J. Auton. Nerv. Syst. 2000; 80: 2230.
  • 34
    Mazzone SB, Geraghty DP. Respiratory actions of tachykinins in the nucleus of the solitary tract. Characterization of receptors using selective agonists and antagonists. Br. J. Pharmacol. 2000; 129: 112131.
  • 35
    McDonald DM, Mitchell RA, Gabella G, Haskell A. Neurogenic inflammation in the rat trachea. II. Identity and distribution of nerves mediating the increase in vascular permeability. J. Neurocytol. 1988; 17: 60528.
  • 36
    Myers A, Undem B, Kummer W. Anatomical and electrophysiological comparison of the sensory innervation of bronchial and tracheal parasympathetic ganglion neurons. J. Auton. Nerv. Syst. 1996; 61: 1628.
  • 37
    Kummer W. Ultrastructure of calcitonin gene-related peptide-immunoreactive nerve fibres in guinea-pig peribronchial ganglia. Regul. Pept. 1992; 37: 13542.
  • 38
    Canning BJ, Reynolds SM, Anukwu LU, Kajekar R, Myers AC. Endogenous neurokinins facilitate synaptic transmission in guinea pig airway parasympathetic ganglia. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2002; 283: R32030.
  • 39
    Helke CJ, Hill KM. Immunohistochemical study of neuropeptides in vagal and glossopharyngeal afferent neurons in the rat. Neuroscience 1988; 26: 53951.
  • 40
    Kummer W, Bachmann S, Neuhuber WL, Hanze J, Lang RE. Tyrosine-hydroxylase-containing vagal afferent neurons in the rat nodose ganglion are independent from neuropeptide-Y-containing populations and project to esophagus and stomach. Cell Tissue Res. 1993; 271: 13544.
  • 41
    Baluk P, Gabella G. Afferent nerve endings in the tracheal muscle of guinea-pigs and rats. Anat. Embryol. (Berlin) 1991; 183: 817.
  • 42
    Yamamoto Y, Hayashi M, Atoji Y, Suzuki Y. Vagal afferent nerve endings in the trachealis muscle of the dog. Arch. Histol. Cytol. 1994; 57: 47380.
  • 43
    Larsell O. Nerve terminations in the lung of the rabbit. J. Comp. Neurol. 1921; 33: 10531.
  • 44
    Larsell O. The innervation of the human lung. Am. J. Anat. 1933; 52: 12546.
  • 45
    Elftman AG. The afferent and parasympathetic innervation of the lungs and trachea of the dog. Am. J. Anat. 1943; 72: 127.
  • 46
    Fischer AWF. The intrinsic innervation of the trachea. J. Anat. 1964; 98: 11724.
  • 47
    Honjin R. On the nerve supply of the lung of the mouse, with special reference to the structure of the peripheral vegetative nervous system. J. Comp. Neurol. 1956; 105: 587625.
  • 48
    Krauhs JM. Morphology of presumptive slowly adapting receptors in dog trachea. Anat. Rec. 1984; 210: 7385.
  • 49
    Adriaensen D, Timmermans JP, Brouns I, Berthoud HR, Neuhuber WL, Scheuermann DW. Pulmonary intraepithelial vagal nodose afferent nerve terminals are confined to neuroepithelial bodies: an anterograde tracing and confocal microscopy study in adult rats. Cell Tissue Res. 1998; 293: 395405.
  • 50
    Lauweryns JM, Cokelaere M. Hypoxia-sensitive neuro-epithelial bodies. Intrapulmonary secretory neuroreceptors, modulated by the CNS. Z. Zellforsch Mikrosk. Anat. 1973; 145: 52140.
  • 51
    Lamb JP, Sparrow MP. Three-dimensional mapping of sensory innervation with substance p in porcine bronchial mucosa: comparison with human airways. Am. J. Respir. Crit. Care Med. 2002; 166: 126981.
  • 52
    Yamamoto Y, Atoji Y, Suzuki Y. Calretinin immunoreactive nerve endings in the trachea and bronchi of the rat. J. Vet. Med. Sci. 1999; 61: 2679.
  • 53
    Mazzone SB, Canning BJ. Plasticity of the cough reflex. Eur. Respir. Rev. 2002; 12: 23642.
  • 54
    Patton HD. Receptor mechanism. In: PattonHD (ed.) Neurophysiology. W. B. Saunders, Philadelphia, 1968; 95112.
  • 55
    Fuortes MGF. Generation of responses in receptor. In: TeuberHL (ed.) Handbook of Sensory Neurophysiology. Springer-Verlag, New York, 1971; 24368.
  • 56
    Carr MJ, Undem BJ. Ion channels in airway afferent neurons. Respir. Physiol. 2001; 125: 8397.
  • 57
    Fain GL. Action potentials: The Hodgkin-Huxley experiments. In: FainGL (ed.) Molecular and Cellular Physiology of Neurons. Harvard University Press, Cambridge, 1999; 255307.
  • 58
    Fuortes MGF. Electric activity of cells in the eye of Limulus. Am. J. Ophthalmol. 1958; 46: 21023.
  • 59
    Terzuolo CA, Washizu Y. Relation between stimulus strength, generator potential and impulse frequency in stretch receptor in crustacea. J. Neurophysiol. 1962; 25: 5566.
  • 60
    Ma QP, Woolf CJ. Involvement of neurokinin receptors in the induction but not the maintenance of mechanical allodynia in rat flexor motoneurones. J. Physiol. 1995; 486: 76977.
  • 61
    Yaksh TL, Hua XY, Kalcheva I, Nozaki-Taguchi N, Marsala M. The spinal biology in humans and animals of pain states generated by persistent small afferent input. Proc. Natl Acad. Sci. USA 1999; 96: 76806.
  • 62
    Rusin KI, Ryu PD, Randic MI. Modulation of excitatory amino acid responses in rat dorsal horn neurons by tachykinins. J. Neurophysiol. 1992; 68: 26586.
  • 63
    Mutoh T, Bonham AC, Joad JP. Substance P in the nucleus of the solitary tract augments bronchopulmonary C fiber reflex output. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2000; 279: R121523.
  • 64
    Bolser DC, DeGennaro FC, O'Reilly S, McLeod RL, Hey JA. Central antitussive activity of the NK1 and NK2 tachykinin receptor antagonists, CP-99,994 and SR 48968, in the guinea-pig and cat. Br. J. Pharmacol. 1997; 121: 16570.
  • 65
    Mazzone SB, Canning BJ. Synergistic interactions between airway afferent nerve subtypes mediating reflex bronchospasm in guinea pigs. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2002; 283: R8698.
  • 66
    Sanico AM, Koliatsos VE, Stanisz AM, Bienenstock J, Togias A. Neural hyperresponsiveness and nerve growth factor in allergic rhinitis. Int. Arch. Allergy Immunol. 1999; 118: 1548.
  • 67
    Riccio MM, Proud D. Evidence that enhanced nasal reactivity to bradykinin in patients with symptomatic allergy is mediated by neural reflexes. J. Allergy Clin. Immunol. 1996; 97: 125263.
  • 68
    Adcock JJ, Garland LG. The contribution of sensory reflexes and ‘hyperalgesia’ to airway hyperresponsiveness. In: GardinerPJ (ed.) Airway Hyperresponsiveness—Is It Really Important for Asthma? Blackwell Science,Oxford, 1999; 23455.
  • 69
    Sheppard D, Epstein J, Skoogh BE, Bethel RA, Nadel JA, Boushey HA. Variable inhibition of histamine-induced bronchoconstriction by atropine in subjects with asthma. J. Allergy Clin. Immunol. 1984; 73: 827.
  • 70
    Holtzman MJ, Sheller JR, Dimeo M, Nadel JA, Boushey HA. Effect of ganglionic blockade on bronchial reactivity in atopic subjects. Am. Rev. Respir. Dis. 1980; 122: 1725.
  • 71
    Fuller RW, Dixon CM, Barnes PJ. Bronchoconstrictor response to inhaled capsaicin in humans. J. Appl. Physiol. 1985; 58: 10804.
  • 72
    Fuller RW, Dixon CM, Cuss FM, Barnes PJ. Bradykinin-induced bronchoconstriction in humans. Mode of action. Am. Rev. Respir. Dis. 1987; 135: 17680.
  • 73
    Sheppard D, Rizk NW, Boushey HA, Bethel RA. Mechanism of cough and bronchoconstriction induced by distilled water aerosol. Am. Rev. Respir. Dis. 1983; 127: 6914.
  • 74
    Minette PA, Lammers JW, Dixon CM, McCusker MT, Barnes PJ. A muscarinic agonist inhibits reflex bronchoconstriction in normal but not in asthmatic subjects. J. Appl. Physiol. 1989; 67: 24615.
  • 75
    Wagner EM, Jacoby DB. Methacholine causes reflex bronchoconstriction. J. Appl. Physiol. 1999; 86: 2947.
  • 76
    Riccio MM, Myers AC, Undem BJ. Immunomodulation of afferent neurons in guinea-pig isolated airway. J. Physiol. 1996; 491: 499509.
  • 77
    Neumann S, Doubell TP, Leslie T, Woolf CJ. Inflammatory pain hypersensitivity mediated by phenotypic switch in myelinated primary sensory neurons. Nature 1996; 384: 3604.
  • 78
    Myers AC, Kajekar R, Undem BJ. Allergic inflammation-induced neuropeptide production in rapidly adapting afferent nerves in guinea pig airways. Am. J. Physiol. Lung Cell. Mol. Physiol. 2002; 282: L77581.
  • 79
    Carr MJ, Hunter DD, Jacoby DB, Undem BJ. Expression of tachykinins in nonnociceptive vagal afferent neurons during respiratory viral infection in guinea pigs. Am. J. Respir. Crit. Care Med. 2002; 165: 10715.
  • 80
    Chen CY, Bonham AC, Schelegle ES, Gershwin LJ, Plopper CG, Joad JP. Extended allergen exposure in asthmatic monkeys induces neuroplasticity in nucleus tractus solitarius. J. Allergy Clin. Immunol. 2001; 108: 55762.