• 1
    Spina D. Epithelium smooth muscle regulation and interactions. Am. J. Respir. Crit. Care Med. 1998; 158: S1415.
  • 2
    Ayers MM, Jeffery PK. Proliferation and differentiation in mammalian airway epithelium. Eur. Respir. J. 1988; 1: 5880.
  • 3
    Harkema JR, Mariassy A, St. George J, Hyde DM, Plopper CG. Epithelial cells of the conducting airways: a species comparison. In: FarmerSG, HayDWP (eds). The Airway Epithelium: Physiology, Pathophysiology and Pharmacology. Marcel-Dekker, New York, 1991; 339.
  • 4
    Jeffery PK. Morphologic features of airway surface epithelial cells and glands. Am. Rev. Respir. Dis. 1983; 128: S1420.
  • 5
    Jeffery PK. Morphology of the airway wall in asthma and in chronic obstructive pulmonary disease. Am. Rev. Respir. Dis. 1991; 143: 11528 (discussion 1161).
  • 6
    Lumsden AB, McLean A, Lamb D. Goblet and Clara cells of human distal airways: evidence for smoking induced changes in their numbers. Thorax 1984; 39: 8449.
  • 7
    Evans MJ, Plopper CG. The role of basal cells in adhesion of columnar epithelium to airway basement membrane. Am. Rev. Respir. Dis. 1988; 138: 4813.
  • 8
    Rogers AV, Dewar A, Corrin B, Jeffery PK. Identification of serous-like cells in the surface epithelium of human bronchioles. Eur. Respir. J. 1993; 6: 498504.
  • 9
    Evans MJ, Cox RA, Shami SG, Plopper CG. Junctional adhesion mechanisms in airway basal cells. Am. J. Respir. Cell. Mol. Biol. 1990; 3: 3417.
  • 10
    Hicks W Jr, Hall L 3rd, Sigurdson L et al. Isolation and characterization of basal cells from human upper respiratory epithelium. Exp. Cell Res. 1997; 237: 35763.
  • 11
    Evans MJ, Cox RA, Shami SG, Wilson B, Plopper CG. The role of basal cells in attachment of columnar cells to the basal lamina of the trachea. Am. J. Respir. Cell Mol. Biol. 1989; 1: 4639.
  • 12
    Boers JE, Ambergen AW, Thunnissen FB. Number and proliferation of basal and parabasal cells in normal human airway epithelium. Am. J. Respir. Crit. Care Med. 1998; 157: 20006.
  • 13
    De Water R, Willems LN, Van Muijen GN et al. Ultrastructural localization of bronchial antileukoprotease in central and peripheral human airways by a gold-labeling technique using monoclonal antibodies. Am. Rev. Respir. Dis. 1986; 133: 88290.
  • 14
    Hong KU, Reynolds SD, Giangreco A, Hurley CM, Stripp BR. Clara cell secretory protein-expressing cells of the airway neuroepithelial body microenvironment include a label-retaining subset and are critical for epithelial renewal after progenitor cell depletion. Am. J. Respir. Cell Mol. Biol. 2001; 24: 67181.
  • 15
    Mercer RR, Russell ML, Roggli VL, Crapo JD. Cell number and distribution in human and rat airways. Am. J. Respir. Cell. Mol. Biol. 1994; 10: 61324.
  • 16
    Gosney JR, Sissons MC, Allibone RO. Neuroendocrine cell populations in normal human lungs: a quantitative study. Thorax 1988; 43: 87882.
  • 17
    Boers JE, Den Brok JL, Koudstaal J, Arends JW, Thunnissen FB. Number and proliferation of neuroendocrine cells in normal human airway epithelium. Am. J. Respir. Crit. Care Med. 1996; 154: 75863.
  • 18
    Weichselbaum M, Sparrow MP, Thompson PJ, Knight DA. A confocal microscopy study of pulmonary neuroendocrine cells in human adult airway epithelium (abstract). Respirology 2002; 7 (Suppl.): A32.
  • 19
    Youngson C, Nurse C, Yeger H, Cutz E. Oxygen sensing in airway chemoreceptors. Nature 1993; 365: 1535.
  • 20
    Reynolds SD, Giangreco A, Power JH, Stripp BR. Neuroepithelial bodies of pulmonary airways serve as a reservoir of progenitor cells capable of epithelial regeneration. Am. J. Pathol. 2000; 156: 26978.
  • 21
    Adriaensen D, Scheuermann DW. Neuroendocrine cells and nerves of the lung. Anat. Rec. 1993; 236: 7085 (discussion 85–6).
  • 22
    Lamb JP, Sparrow MP. Three-dimensional mapping of sensory innervation with substance p in porcine bronchial mucosa: comparison with human airways. Am. J. Respir. Crit. Care Med. 2002; 166: 126981.
  • 23
    Howarth PH, Springall DR, Redington AE, Djukanovic R, Holgate ST, Polak JM. Neuropeptide-containing nerves in endobronchial biopsies from asthmatic and nonasthmatic subjects. Am. J. Respir. Cell. Mol. Biol. 1995; 13: 28896.
  • 24
    Schon-Hegrad MA, Oliver J, McMenamin PG, Holt PG. Studies on the density, distribution, and surface phenotype of intraepithelial class II major histocompatibility complex antigen (Ia)-bearing dendritic cells (DC) in the conducting airways. J. Exp. Med. 1991; 173: 134556.
  • 25
    Holt PG, McMenamin C, Schon-Hegrad MA et al. Immunoregulation of asthma: control of T-lymphocyte activation in the respiratory tract. Eur. Respir. J. 1991; 13 (Suppl.): S615.
  • 26
    Howarth PH, Bradding P, Montefort S et al. Mucosal inflammation and asthma. Am. J. Respir. Crit. Care Med. 1994; 150: S1822.
  • 27
    Montefort S, Lai CK, Kapahi P et al. Circulating adhesion molecules in asthma. Am. J. Respir. Crit. Care Med. 1994; 149: 114952.
  • 28
    Hynes RO. Integrins: versatility, modulation, and signaling in cell adhesion. Cell 1992; 69: 1125.
  • 29
    Sheppard D. Airway epithelial integrins: why so many? Am. J. Respir. Cell. Mol. Biol. 1998; 19: 34951.
  • 30
    Sheppard D. Epithelial integrins. Bioessays 1996; 18: 65560.
  • 31
    Damjanovich L, Albelda SM, Mette SA, Buck CA. Distribution of integrin cell adhesion receptors in normal and malignant lung tissue. Am. J. Respir. Cell Mol. Biol. 1992; 6: 197206.
  • 32
    Shang XZ, Issekutz AC. Beta 2 (CD18) and beta 1 (CD29) integrin mechanisms in migration of human polymorphonuclear leucocytes and monocytes through lung fibroblast barriers: shared and distinct mechanisms. Immunology 1997; 92: 52735.
  • 33
    Trusolino L, Cavassa S, Angelini P et al. HGF/scatter factor selectively promotes cell invasion by increasing integrin avidity. FASEB J. 2000; 14: 162940.
  • 34
    Xu J, Clark RA. Extracellular matrix alters PDGF regulation of fibroblast integrins. J. Cell Biol. 1996; 132: 23949.
  • 35
    Cruet S, Salamanca C, Mitchell GW, Auersperg N. Alphavbeta3 and vitronectin expression by normal ovarian surface epithelial cells. Role in cell adhesion and cell proliferation. Gynecol. Oncol. 1999; 75: 25460.
  • 36
    Shang T, Yednock T, Issekutz AC. Alpha9beta1 integrin is expressed on human neutrophils and contributes to neutrophil migration through human lung and synovial fibroblast barriers. J. Leukoc. Biol. 1999; 66: 80916.
  • 37
    Carver W, Molano I, Reaves TA, Borg TK, Terracio L. Role of the alpha 1 beta 1 integrin complex in collagen gel contraction in vitro by fibroblasts. J. Cell. Physiol. 1995; 165: 42537.
  • 38
    Yokosaki Y, Monis H, Chen J, Sheppard D. Differential effects of the integrins alpha9beta1, alphavbeta3, and alphavbeta6 on cell proliferative responses to tenascin. Roles of the beta subunit extracellular and cytoplasmic domains. J. Biol. Chem. 1996; 271: 2414450.
  • 39
    Sarkissian M, Lafyatis R. Integrin engagement regulates proliferation and collagenase expression of rheumatoid synovial fibroblasts. J. Immunol. 1999; 162: 17729.
  • 40
    Boudreau NJ, Jones PL. Extracellular matrix and integrin signalling: the shape of things to come. Biochem. J. 1999; 339: 4818.
  • 41
    Hertle MD, Kubler MD, Leigh IM, Watt FM. Aberrant integrin expression during epidermal wound healing and in psoriatic epidermis. J. Clin. Invest. 1992; 89: 1892901.
  • 42
    Dahm LM, Bowers CW. Vitronectin regulates smooth muscle contractility via alphav and beta1 integrin. J. Cell Sci. 1998; 111: 117583.
  • 43
    Scaffidi AK, Moodley YP, Weichselbaum M, Thompson PJ, Knight DA. Regulation of human lung fibroblast phenotype and function by vitronectin and vitronectin integrins. J. Cell Sci. 2001; 114: 350716.
  • 44
    Brooks PC, Stromblad S, Sanders LC et al. Localisation of matrix metalloproteinase MMP-2 to the surface of invasive cells by interaction with integrin alpha v beta 3. Cell 1996; 85: 68393.
  • 45
    Huhtala P, Humphries MJ, McCarthy JB, Tremble PM, Werb Z, Damsky CH. Cooperative signaling by alpha 5 beta 1 and alpha 4 beta 1 integrins regulates metalloproteinase gene expression in fibroblasts adhering to fibronectin. J. Cell Biol. 1995; 129: 86779.
  • 46
    Jones PL, Crack J, Rabinovitch M. Regulation of tenascin-c, a vascular smooth muscle cell survival factor that interacts with the alpha v beta 3 integrin to promote epidermal growth factor receptor phosphory-lation and growth. J. Cell Biol. 1997; 139: 27993.
  • 47
    Munger JS, Huang X, Kawakatsu H et al. The integrin alpha v beta 6 binds and activates latent TGF beta 1: a mechanism for regulating pulmonary inflammation and fibrosis. Cell 1999; 96: 31928.
  • 48
    Clark RA, Tonnesen MG, Gailit J, Cheresh DA. Transient functional expression of alphaVbeta 3 on vascular cells during wound repair. Am. J. Pathol. 1996; 148: 140721.
  • 49
    Storgard CM, Stupack DG, Jonczyk A, Goodman SL, Fox RI, Cheresh DA. Decreased angiogenesis and arthritic disease in rabbits treated with an alphavbeta3 antagonist [see comments]. J. Clin. Invest. 1999; 103: 4754.
  • 50
    Varner JA, Brooks PC, Cheresh DA. The integrin alpha V beta 3: angiogenesis and apoptosis. Cell Adhes. Commun. 1995; 3: 36774.
  • 51
    Brooks PC, Montgomery AM, Rosenfeld M et al. Integrin alpha v beta 3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell 1994; 79: 115764.
  • 52
    Cambier S, Mu DZ, O'Connell D et al. A role for the integrin alphavbeta8 in the negative regulation of epithelial cell growth. Cancer Res. 2000; 60: 708493.
  • 53
    Montefort S, Roberts JA, Beasley R, Holgate ST, Roche WR. The site of disruption of the bronchial epithelium in asthmatic and non-asthmatic subjects. Thorax 1992; 47: 499503.
  • 54
    Montefort S, Djukanovic R, Holgate ST, Roche WR. Ciliated cell damage in the bronchial epithelium of asthmatics and non-asthmatics. Clin. Exp. Allergy 1993; 23: 1859.
  • 55
    Holgate ST. Epithelial damage and response. Clin. Exp. Allergy 2000; 30 (Suppl. 1): 3741.
  • 56
    Cichy J, Bals R, Potempa J, Mani A, Pure E. Proteinase-mediated release of epithelial cell-associated CD44. Extracellular CD44 complexes with components of cellular matrices. J. Biol. Chem. 2002; 277: 444407.
  • 57
    Lackie PM, Baker JE, Gunthert U, Holgate ST. Expression of CD44 isoforms is increased in the airway epithelium of asthmatic subjects. Am. J. Respir. Cell Mol. Biol. 1997; 16: 1422.
  • 58
    Terranova VP, Rohrbach DH, Martin GR. Role of laminin in the attachment of PAM 212 (epithelial) cells to basement membrane collagen. Cell 1980; 22: 71926.
  • 59
    Boudreau N, Werb Z, Bissell MJ. Suppression of apoptosis by basement membrane requires three-dimensional tissue organization and withdrawal from the cell cycle. Proc. Natl Acad. Sci. USA 1996; 93: 350913.
  • 60
    Paulsson M. Basement membrane proteins: structure, assembly, and cellular interactions. Crit. Rev. Biochem. Mol. Biol. 1992; 27: 93127.
  • 61
    Howat WJ, Barabas T, Holmes JA, Holgate ST, Lackie PM. Distribution of basement membrane pores in bronchus revealed by microscopy following epithelial removal. J. Struct. Biol. 2002; 139: 13745.
  • 62
    Howat WJ, Holmes JA, Holgate ST, Lackie PM. Basement membrane pores in human bronchial epithelium: a conduit for infiltrating cells? Am. J. Pathol. 2001; 158: 67380.
  • 63
    Knight D. Epithelium–fibroblast interactions in response to airway inflammation. Immunol. Cell Biol. 2001; 79: 1604.
    Direct Link:
  • 64
    Holgate ST. The inflammation-repair cycle in asthma: the pivotal role of the airway epithelium. Clin. Exp. Allergy 1998; 28: 97103.
  • 65
    Holgate ST, Lackie P, Wilson S, Roche W, Davies D. Bronchial epithelium as a key regulator of airway allergen sensitization and remodeling in asthma. Am. J. Respir. Crit. Care Med. 2000; 162: S11317.
  • 66
    Churg A. The uptake of mineral particles by pulmonary epithelial cells. Am. J. Respir. Crit. Care Med. 1996; 154: 112440.
  • 67
    Sparrow MP, Omari TI, Mitchell HW. The epithelial barrier and airway responsiveness. Can. J. Physiol. Pharmacol. 1995; 73: 18090.
  • 68
    Barnes PJ, Chung KF, Page CP. Inflammatory mediators and asthma. Pharmacol. Rev. 1988; 40: 4984.
  • 69
    Chung KF, Barnes PJ. Cytokines in asthma. Thorax 1999; 54: 82557.
  • 70
    Raeburn D, Webber SE. Proinflammatory potential of the airway epithelium in bronchial asthma. Eur. Respir. J. 1994; 7: 222633.
  • 71
    Holtzman MJ. Arachidonic acid metabolism in airway epithelial cells. Annu. Rev. Physiol. 1992; 54: 30329.
  • 72
    Knight DA, Stewart GA, Thompson PJ. PGE2 but not prostacyclin inhibits histamine-induced contraction of human bronchial smooth muscle. Eur. J. Pharmacol. 1995; 272: 1319.
  • 73
    Knight DA, Stewart GA, Lai ML, Thompson PJ. Epithelium-derived inhibitory prostaglandins modulate human bronchial smooth muscle responses to histamine. Eur. J. Pharmacol. 1995; 272: 111.
  • 74
    Pavord ID, Tattersfield AE. Bronchoprotective role for endogenous prostaglandin E2 [see comments]. Lancet 1995; 345: 4368.
  • 75
    Matsumoto K, Aizawa H, Takata S, Koto H, Inoue H, Hara N. Cultured epithelial cells release cyclooxygenase-dependent and cyclooxygenase-independent factors that inhibit cholinergic contraction of canine airway smooth muscles. Respiration 1996; 63: 20512.
  • 76
    Kalinski P, Hilkens CMU, Snijders A, Snijdewint FGM, Kapsenberg ML. IL-12 deficient dendritic cells, generated in the presence of prostaglandin E2, promote type 2 cytokine production in maturing human naive T helper cells. J. Immunol. 1997; 159: 2835.
  • 77
    De Marzo N, Sloane DL, Dicharry S, Highland E, Sigal E. Cloning and expression of an airway epithelial 12-lipoxygenase. Am. J. Physiol. 1992; 262: L198207.
  • 78
    Sigal E, Dicharry S, Highland E, Finkbeiner WE. Cloning of human airway 15-lipoxygenase: identity to the reticulocyte enzyme and expression in epithelium. Am. J. Physiol. 1992; 262: L3928.
  • 79
    Herbert CA, Holgate ST, Robinson C, Thompson PJ, Stewart GA. Effect of mite allergen on permeability of bronchial mucosa. Lancet 1990; 336: 1132.
  • 80
    Eling TE, Danilowicz RM, Henke DC, Sivarajah K, Yankaskas JR, Boucher RC. Arachidonic acid metabolism by canine tracheal epithelial cells. Product formation and relationship to chloride secretion. J. Biol. Chem. 1986; 261: 128419.
  • 81
    Hunter JA, Finkbeiner WE, Nadel JA, Goetzl EJ, Holtzman MJ. Predominant generation of 15-lipoxygenase metabolites of arachidonic acid by epithelial cells from human trachea. Proc. Natl Acad. Sci. USA 1985; 82: 46337.
  • 82
    Hill EM, Eling T, Nettesheim P. Changes in expression of 15-lipoxygenase and prostaglandin-H synthase during differentiation of human tracheobronchial epithelial cells. Am. J. Respir. Cell Mol. Biol. 1998; 18: 6629.
  • 83
    Kowalski ML, Pawliczak R, Wozniak J et al. Differential metabolism of arachidonic acid in nasal polyp epithelial cells cultured from aspirin-sensitive and aspirin-tolerant patients. Am. J. Respir. Crit. Care Med. 2000; 161: 3918.
  • 84
    Schellenberg RR, Tsang S, Salari H. Leukotrienes mediate delayed airway effects of 15-HETE. Ann. NY. Acad. Sci. 1994; 744: 24350.
  • 85
    Gao Y, Vanhoutte PM. Respiratory epithelium modulates the responses of canine bronchi to cooling. J. Appl. Physiol. 1993; 74: 24215.
  • 86
    Watkins DN, Peroni DJ, Basclain KE, Garlepp MJ, Thompson PJ. Expression and activity of nitric oxide synthases in human airway epithelium. Am. J. Respir. Cell. Mol. Biol. 1997; 16: 62939.
  • 87
    Gaston B, Drazen JM, Loscalzo J, Stamler JS. The biology of nitrogen oxides in the airways. Am. J. Respir. Crit. Care Med. 1994; 149: 53851.
  • 88
    Michel T, Feron O. Nitric oxide synthases. Which, where, how and why? J. Clin. Invest. 1997; 100: 214652.
  • 89
    Folkerts G, Kloek J, Muijsers RB, Nijkamp FP. Reactive nitrogen and oxygen species in airway inflammation. Eur. J. Pharmacol. 2001; 429: 25162.
  • 90
    Kharitonov SA, O'Connor BJ, Evans DJ, Barnes PJ. Allergen-induced late asthmatic reactions are associated with elevation of exhaled nitric oxide. Am. J. Respir. Crit. Care Med. 1995; 151: 18949.
  • 91
    Alving K, Weitzberg E, Lundberg JM. Increased amount of nitric oxide in exhaled air of asthmatics. Eur. Respir. J. 1993; 6: 136870.
  • 92
    Ricciardolo FL, Geppetti P, Mistretta A et al. Randomised double-blind placebo-controlled study of the effect of inhibition of nitric oxide synthesis in bradykinin-induced asthma. Lancet 1996; 348: 3747.
  • 93
    Takeyama K, Dabbagh K, Lee HM et al. Epidermal growth factor system regulates mucin production in airways. Proc. Natl Acad. Sci. USA 1999; 96: 30816.
  • 94
    Sweeney C, Fambrough D, Huard C et al. Growth factor-specific signaling pathway stimulation and gene expression mediated by ErbB receptors. J. Biol. Chem. 2001; 276: 22 685–98.
  • 95
    Amishima M, Munakata M, Nasuhara Y et al. Expression of epidermal growth factor and epidermal growth factor receptor immunoreactivity in the asthmatic human airway. Am. J. Respir. Crit. Care Med. 1998; 157: 190712.
  • 96
    Puddicombe SM, Polosa R, Richter A et al. Involvement of the epidermal growth factor receptor in epithelial repair in asthma. FASEB J. 2000; 14: 136274.
  • 97
    Polosa R, Prosperini G, Leir SH, Holgate ST, Lackie PM, Davies DE. Expression of c-erbB receptors and ligands in human bronchial mucosa. Am. J. Respir. Cell Mol. Biol. 1999; 20: 91423.
  • 98
    Zwick E, Hackel PO, Prenzel N, Ullrich A. The EGF receptor as central transducer of heterologous signalling systems. Trends Pharmacol. Sci. 1999; 20: 40812.
  • 99
    Hackel PO, Zwick E, Prenzel N, Ullrich A. Epidermal growth factor receptors: critical mediators of multiple receptor pathways. Curr. Opin. Cell Biol. 1999; 11: 1849.
  • 100
    Pierce KL, Tohgo A, Ahn S, Field ME, Luttrell LM, Lefkowitz RJ. Epidermal growth factor (EGF) receptor dependent ERK activation by G protein-coupled receptors: a co-culture system for identifying intermediates upstream and downstream of heparin-binding-EGF shedding. J. Biol. Chem. 2001; 276: 23 155–60.
  • 101
    Lin SY, Makino K, Xia W et al. Nuclear localization of EGF receptor and its potential new role as a transcription factor. Nat. Cell Biol. 2001; 3: 8028.
  • 102
    Shim JJ, Dabbagh K, Ueki IF et al. IL-13 induces mucin production by stimulating epidermal growth factor receptors and by activating neutrophils. Am. J. Physiol. Lung Cell. Mol. Physiol. 2001; 280: L13440.
  • 103
    Assoian RK, Schwartz MA. Coordinate signaling by integrins and receptor tyrosine kinases in the regulation of G1phase cell-cycle progression. Curr. Opin. Genet. Dev. 2001; 11: 4853.
  • 104
    Fambrough D, McClure K, Kazlauskas A, Lander ES. Diverse signaling pathways activated by growth factor receptors induce broadly overlapping, rather than independent, sets of genes. Cell 1999; 97: 72741.
  • 105
    Ediger TL, Toews ML. Synergistic stimulation of airway smooth muscle cell mitogenesis. J. Pharmacol. Exp. Ther. 2000; 294: 107682.
  • 106
    Wang A, Yokosaki Y, Ferrando R, Balmes J, Sheppard D. Differential regulation of airway epithelial integrins by growth factors. Am. J. Respir. Cell Mol. Biol. 1996; 15: 66472.
  • 107
    Tseng SC, Li DQ, Ma X. Suppression of transforming growth factor-beta isoforms, TGF-beta receptor type II, and myofibroblast differentiation in cultured human corneal and limbal fibroblasts by amniotic membrane matrix. J. Cell. Physiol. 1999; 179: 32535.
  • 108
    Moustakas A, Souchelnytskyi S, Heldin C-H. Smad regulation in TGF-{beta} signal transduction. J. Cell Sci. 2001; 114: 435969.
  • 109
    Zieske JD, Hutcheon AEK, Guo X, Chung E-H, Joyce NC. TGF-{beta} receptor types I and II are differentially expressed during corneal epithelial wound repair. Invest. Ophthalmol. Vis. Sci. 2001; 42: 146571.
  • 110
    Chen G, Grotendorst G, Eichholtz T, Khalil N. GM-CSF increases airway smooth muscle cell connective tissue expression by inducing TGF-beta receptors. Am. J. Physiol. Lung Cell. Mol. Physiol. 2003; 284: L54856.
  • 111
    Yu L, Hebert MC, Zhang YE. TGF-{beta} receptor-activated p38 MAP kinase mediates Smad-independent TGF-{beta} responses. EMBO J. 2002; 21: 374959.
  • 112
    Boland S, Boisvieux-Ulrich E, Houcine O et al. TGF beta 1 promotes actin cytoskeleton reorganization and migratory phenotype in epithelial tracheal cells in primary culture. J. Cell Sci. 1996; 109: 220719.
  • 113
    Howat WJ, Holgate ST, Lackie PM. TGF-beta isoform release and activation during in vitro bronchial epithelial wound repair. Am. J. Physiol. Lung Cell. Mol. Physiol. 2002; 282: L11523.
  • 114
    Borson DB. Roles of neutral endopeptidase in airways. Am. J. Physiol. 1991; 260: L21225.
  • 115
    Nadel JA, Borson DB. Modulation of neurogenic inflammation by neutral endopeptidase. Am. Rev. Respir. Dis. 1991; 143: S336.
  • 116
    Koga Y, Satoh S, Sodeyama N, Hashimoto Y, Yanagisawa T, Hirshman CA. Role of acetylcholinesterase in airway epithelium-mediated inhibition of acetylcholine-induced contraction of guinea-pig isolated trachea. Eur. J. Pharmacol. 1992; 220: 1416.
  • 117
    Ohrui T, Yamauchi K, Sekizawa K et al. Histamine N-methyltransferase controls the contractile response of guinea pig trachea to histamine. J. Pharmacol. Exp. Ther. 1992; 261: 126872.
  • 118
    Erjefalt JS, Persson CG. Airway epithelial repair: breathtakingly quick and multipotentially pathogenic. Thorax 1997; 52: 10102.
  • 119
    Erjefalt JS, Erjefalt I, Sundler F, Persson CGA. In vivo restitution of airway epithelium. Cell Tissue Res. 1995; 281: 30516.
  • 120
    Erjefalt JS, Korsgren M, Nilsson MC, Sundler F, Persson CGA. Association between inflammation and epithelial damage-restitution processes in allergic airways in vivo. Clin. Exp. Allergy 1997; 27: 134455.
  • 121
    Erjefalt JS, Erjefalt I, Sundler F, Persson CG. Microcirculation-derived factors in airway epithelial repair in vivo. Microvasc. Res. 1994; 48: 16178.
  • 122
    Persson CG. Epithelial cells, barrier functions and shedding-restitution mechanisms. Am. J. Respir. Crit. Care Med. 1996; 153: S910.
  • 123
    Horiba K, Fukuda Y. Synchronous appearance of fibronectin, integrin alpha 5 beta 1, vinculin and actin in epithelial cells and fibroblasts during rat tracheal wound healing. Virchows Arch. 1994; 425: 42534.
  • 124
    Rickard KA, Taylor J, Rennard SI, Spurzem JR. Migration of bovine bronchial epithelial cells to extracellular matrix components. Am. J. Respir. Cell Mol. Biol. 1993; 8: 638.
  • 125
    Rickard KA, Shoji S, Spurzem JR, Rennard SI. Attachment characteristics of bovine bronchial epithelial cells to extracellular matrix components. Am. J. Respir. Cell Mol. Biol. 1991; 4: 4408.
  • 126
    Kawamoto M, Matsunami T, Ertl RF et al. Selective migration of alpha-smooth muscle actin-positive myofibroblasts toward fibronectin in the Boyden's blindwell chamber. Clin. Sci. (Lond). 1997; 93: 35562.
  • 127
    Pilewski JM, Latoche JD, Arcasoy SM, Albelda SM. Expression of integrin cell adhesion receptors during human airway epithelial repair in vivo. Am. J. Physiol. (Lung Cell. Mol. Physiol.) 1997; 273: L256L263.
  • 128
    Dupuit F, Gaillard D, Hinnrasky J et al. Differentiated and functional human airway epithelium regeneration in tracheal xenografts. Am. J. Physiol. Lung Cell. Mol. Physiol. 2000; 278: L165L176.
  • 129
    Goldman MJ, Anderson GM, Stolzenberg ED, Kari UP, Zasloff M, Wilson JM. Human beta-defensin-1 is a salt-sensitive antibiotic in lung that is inactivated in cystic fibrosis. Cell 1997; 88: 55360.
  • 130
    Zhang Y, Doranz B, Yankaskas JR, Engelhardt JF. Genotypic analysis of respiratory mucous sulfation defects in cystic fibrosis. J. Clin. Invest. 1995; 96: 29973004.
  • 131
    Goldman MJ, Wilson JM. Expression of alpha v beta 5 integrin is necessary for efficient adenovirus-mediated gene transfer in the human airway. J. Virol. 1995; 69: 59518.
  • 132
    Goldman MJ, Litzky LA, Engelhardt JF, Wilson JM. Transfer of the CFTR gene to the lung of nonhuman primates with E1- deleted, E2a-defective recombinant adenoviruses: a preclinical toxicology study. Hum. Gene Ther. 1995; 6: 83951.
  • 133
    Hoshino M, Nakamura Y, Sim JJ. Expression of growth factors and remodelling of the airway wall in bronchial asthma. Thorax 1998; 53: 217.
  • 134
    Zhang S, Smartt H, Holgate ST, Roche WR. Growth factors secreted by bronchial epithelial cells control myofibroblast proliferation: an in vitro co-culture model of airway remodeling in asthma. Lab. Invest. 1999; 79: 395405.
  • 135
    Schmitt-Graff A, Desmouliere A, Gabbiani G. Heterogeneity of myofibroblast phenotypic features: an example of fibroblastic cell plasticity. Virchows Arch. 1994; 425: 324.
  • 136
    Powell DW, Mifflin RC, Valentich JD, Crowe SE, Saada JI, West AB. Myofibroblasts. I. Paracrine cells important in health and disease. Am. J. Physiol. 1999; 277: C19.
  • 137
    Leslie KO, Mitchell J, Low R. Lung myofibroblasts. Cell Motil. Cytoskeleton 1992; 22: 928.
  • 138
    Miettinen PJ, Warburton D, Bu D et al. Impaired lung branching morphogenesis in the absence of functional EGF receptor. Dev. Biol. 1997; 186: 22436.
  • 139
    Minoo P, King RJ. Epithelial–mesenchymal interactions in lung development. Annu. Rev. Physiol. 1994; 56: 1345.
  • 140
    Jeffrey PK. The development of large and small airways. Am. J. Respir. Crit. Care Med. 1998; 157: S17480.
  • 141
    Davies DE, Wicks J, Powell RM, Puddicombe SM, Holgate ST. Airway remodeling in asthma: New insights. J. Allergy Clin. Immunol. 2003; 111: 21525.
  • 142
    Davies DE, Holgate ST. Asthma: the importance of epithelial mesenchymal communication in pathogenesis. Inflammation and the airway epithelium in asthma. Int. J. Biochem. Cell Biol. 2002; 34: 15206.
  • 143
    Holgate ST, Lackie PM, Howarth PH et al. Invited lecture: activation of the epithelial mesenchymal trophic unit in the pathogenesis of asthma. Int. Arch. Allergy Immunol. 2001; 124: 2538.
  • 144
    Brewster CE, Howarth PH, Djukanovic R, Wilson J, Holgate ST, Roche WR. Myofibroblasts and subepithelial fibrosis in bronchial asthma. Am. J. Respir. Cell Mol. Biol. 1990; 3: 50711.
  • 145
    Iwano M, Plieth D, Danoff TM, Xue C, Okada H, Neilson EG. Evidence that fibroblasts derive from epithelium during tissue fibrosis. J. Clin. Invest. 2002; 110: 34150.
  • 146
    Prockop DJ. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 1997; 276: 714.
  • 147
    Strutz F, Okada H, Lo CW et al. Identification and characterization of a fibroblast marker: FSP1. J. Cell Biol. 1995; 130: 393405.
  • 148
    Strutz F, Zeisberg M, Renziehausen A et al. TGF-beta 1 induces proliferation in human renal fibroblasts via induction of basic fibroblast growth factor (FGF-2). Kidney Int. 2001; 59: 57992.
  • 149
    Strutz F. The fibroblast—a (trans-)differentiated cell? Nephrol. Dial. Transplant. 1995; 10: 15046.
  • 150
    Okada H, Danoff TM, Kalluri R, Neilson EG. Early role of Fsp1 in epithelial-mesenchymal transformation. Am. J. Physiol. 1997; 273: F56374.
  • 151
    Fan JM, Ng YY, Hill PA et al. Transforming growth factor-beta regulates tubular epithelial-myofibroblast transdifferentiation in vitro. Kidney Int. 1999; 56: 145567.
  • 152
    Ordonez C, Ferrando R, Hyde DM, Wong HH, Fahy JV. Epithelial desquamation in asthma. Artifact or pathology? Am. J. Respir. Crit. Care Med. 2000; 162: 23249.
  • 153
    Fahy JV. Remodeling of the airway epithelium in asthma. Am. J. Respir. Crit. Care Med. 2001; 164: S4651.
  • 154
    Holgate ST, Davies DE, Ordonez CL, Fahy JV. Epithelial desquamation in asthma. Am. J. Respir. Crit. Care Med. 2001; 164: 1997.
  • 155
    Sampath D, Castro M, Look DC, Holtzman MJ. Constitutive activation of an epithelial signal transducer and activator of transcription (STAT) pathway in asthma. J. Clin. Invest. 1999; 103: 135361.
  • 156
    Mullings RE, Wilson SJ, Puddicombe SM et al. Signal transducer and activator of transcription 6 (STAT-6) expression and function in asthmatic bronchial epithelium. J. Allergy Clin. Immunol. 2001; 108: 8328.
  • 157
    Puddicombe SM, Torres-Lozano C, Richter A et al. Increased expression of p21 (waf) cyclin-dependent kinase inhibitor in asthmatic bronchial epithelium. Am. J. Respir. Cell. Mol. Biol. 2003; 28: 618.
  • 158
    Knight D, Lim S, Scaffidi A et al. Protease-activated receptors in human airways: Upregulation of PAR-2 in respiratory epithelium from patients with asthma. J. Allergy Clin. Immunol. 2001; 108: 797803.
  • 159
    Cocks TM, Fong B, Chow JM et al. A protective role for protease-activated receptors in the airways. Nature 1999; 398: 15660.
  • 160
    Lindner JR, Kahn ML, Coughlin SR et al. Delayed onset of inflammation in protease-activated receptor-2- deficient mice. J. Immunol. 2000; 165: 650410.
  • 161
    Steinhoff M, Vergnolle N, Young SH et al. Agonists of proteinase-activated receptor 2 induce inflammation by a neurogenic mechanism. Nat. Med. 2000; 6: 1518.
  • 162
    Asokananthan N, Graham PT, Fink J et al. Activation of protease-activated receptor (PAR) -1, PAR-2, and PAR-4 stimulates IL-6, IL-8, and prostaglandin E2 release from human respiratory epithelial cells. J. Immunol. 2002; 168: 357785.
  • 163
    Bayram H, Devalia JL, Khair OA et al. Comparison of ciliary activity and inflammatory mediator release from bronchial epithelial cells of nonatopic nonasthmatic subjects and atopic asthmatic patients and the effect of diesel exhaust particles in vitro. J. Allergy Clin. Immunol. 1998; 102: 77182.
  • 164
    Hastie AT, Kraft WK, Nyce KB et al. Asthmatic epithelial cell proliferation and stimulation of collagen production: human asthmatic epithelial cells stimulate collagen type III production by human lung myofibroblasts after segmental allergen challenge. Am. J. Respir. Crit. Care Med. 2002; 165: 26672.
  • 165
    Bayram H, Rusznak C, Khair OA, Sapsford RJ, Abdelaziz MM. Effect of ozone and nitrogen dioxide on the permeability of bronchial epithelial cell cultures of non-asthmatic and asthmatic subjects. Clin. Exp. Allergy 2002; 32: 128592.
  • 166
    Bayram H, Devalia JL, Sapsford RJ et al. The effect of diesel exhaust particles on cell function and release of inflammatory mediators from human bronchial epithelial cells in vitro. Am. J. Respir. Cell Mol. Biol. 1998; 18: 4418.
  • 167
    Bucchieri F, Puddicombe SM, Lordan JL et al. Asthmatic bronchial epithelium is more susceptible to oxidant-induced apoptosis. Am. J. Respir. Cell Mol. Biol. 2002; 27: 17985.
  • 168
    Schwiebert LM, Stellato C, Schleimer RP. The epithelium as a target of glucocorticoid action in the treatment of asthma. Am. J. Respir. Crit. Care Med. 1996; 154: S1619 (discussion S19–20).
  • 169
    Barnes PJ. Molecular mechanisms of glucocorticoid action in asthma. Pulm. Pharmacol. Ther. 1997; 10: 319.
  • 170
    Turner MO, Johnston PR, Pizzichini E, Pizzichini MM, Hussack PA, Hargreave FE. Anti-inflammatory effects of salmeterol compared with beclomethasone in eosinophilic mild exacerbations of asthma: a randomized, placebo controlled trial. Can. Respir. J. 1998; 5: 2618.
  • 171
    Hargreave FE. Induced sputum and response to glucocorticoids. J. Allergy Clin. Immunol. 1998; 102: S1025.
  • 172
    Adcock IM, Peters M, Gelder C, Shirasaki H, Brown CR, Barnes PJ. Increased tachykinin receptor gene expression in asthmatic lung and its modulation by steroids. J. Mol. Endocrinol. 1993; 11: 17.
  • 173
    Grosset C, Taupin JL, Lemercier C, Moreau JF, Reiffers J, Ripoche J. Leukaemia inhibitory factor expression is inhibited by glucocorticoids through post-transcriptional mechanisms. Cytokine 1999; 11: 2936.
  • 174
    Donnelly LE, Barnes PJ. Expression and regulation of inducible nitric oxide synthase from human primary airway epithelial cells. Am. J. Respir. Cell Mol. Biol. 2002; 26: 14451.
  • 175
    Holgate ST, Davies DE, Lackie PM, Wilson SJ, Puddicombe SM, Lordan JL. Epithelial–mesenchymal interactions in the pathogenesis of asthma. J. Allergy Clin. Immunol. 2000; 105: 193204.
  • 176
    Dorscheid DR, Wojcik KR, Sun S, Marroquin B, White SR. Apoptosis of airway epithelial cells induced by corticosteroids. Am. J. Respir. Crit. Care Med. 2001; 164: 193947.
  • 177
    Carayol N, Vachier I, Chanez P, Vignola AM, Chiappara G. Corticosteroid-induced epithelial shedding in asthma. Am. J. Respir. Crit. Care Med. 2002; 166: 12901 (author reply 1291).
  • 178
    Pohunek P, Roche WR, Tarzikova J, Kurdmann J, Warner JO. Eosinophilic inflammation in the bronchial mucosa in children with bronchial asthma [abstract]. Eur. Respir. J. 2000; 11 (Suppl. 25): 160s.
  • 179
    The Childhood Asthma Management Program Research Group. Long-term effects of budesonide or nedocromil in children with asthma. N. Engl. J. Med. 2000; 343: 105463.