SEARCH

SEARCH BY CITATION

References

  • 1
    Taylor JD, Holmes TM, Swanson GM. Descriptive epidemiology of prostate cancer in metropolitan Detroit. Cancer 1994; 73: 17047.
  • 2
    Oishi K, Yoshida O, Schroeder FH. The geography of prostate cancer and its treatment in Japan. Cancer Surv. 1995; 23: 26780.
  • 3
    Hanchette CL, Schwartz GG. Geographic patterns of prostate cancer mortality. Cancer 1992; 70: 28619.
  • 4
    Rodriguez C, Tatham LM, Thun MJ, Calle EE, Heath C Jr. Smoking and fatal prostate cancer in a large cohort of adult men. Am. J. Epidemiol. 1997; 145: 46675.
  • 5
    Wadelius M, Autrup JL, Stubbins MJ et al. Polymorphisms in NAT2, CYP2D6, CYP2C19 and GSTP1 and their association with prostate cancer. Pharmacogenetics 1999; 9: 33340.
  • 6
    Pienta KJ, Esper PS. Risk factors for prostate cancer. Ann. Intern. Med. 1993; 118: 793803.
  • 7
    Ingles SA, Ross RK, Yu MC et al. Association of prostate cancer risk with genetic polymorphisms in the vitamin D receptor and androgen receptor. J. Natl Cancer Inst. 1997; 89: 16670.
  • 8
    Habuchi T, Suzuki T, Sasaki R et al. Association of vitamin D receptor gene polymorphism with prostate cancer and benign prostatic hyperplasia in a Japanese population. Cancer Res. 2000; 60: 3058.
  • 9
    Hamasaki T, Inatomi H, Katoh T, Ikuyama T, Matsumoto T. Clinical and pathological significance of vitamin D receptor gene polymorphism for prostate cancer which is associated with a higher mortality in Japanese. Endocr. J. 2001; 48: 5439.
  • 10
    Caporaso N, Goldstein A. Cancer genes: single and susceptibility: exposing the difference. Pharmacogenetics 1995; 5: 5963.
  • 11
    Murata M, Watanabe M, Yamanaka M et al. Genetic polymorphisms in cytochrome P 450 (CYP) 1A1, CYP 1A2, CYP 2E1, glutathione S-transferase (GST) M1 and GSTT1 and susceptibility to prostate cancer in the Japanese population. Cancer Lett. 2001; 165: 1717.
  • 12
    Kote-Jarai Z, Easton D, Edwards SM et al. Relationship between glutathione S-transferase M1, P1 and T1 polymorphisms and early onset prostate cancer. Pharmacogenetics 2001; 11: 32530.
  • 13
    Guengerich FP. Influence of nutrients and other dietary materials on cytocrome P-450 enzymes. Am. J. Clin. Nutr. 1995; 61: 6518.
  • 14
    Katoh T, Inatomi H, Yang M, Kawamoto T, Matsumoto T, Bell DA. Arylamine N-acetyltransferase 1 (NAT1) and 2 (NAT2) genes and risk of urothelial transitional cell carcinoma among Japanese. Pharmacogenetics 1999; 9: 4014.
  • 15
    Inatomi H, Katoh K, Kawamoto T, Matsumoto T. NAT 2 gene polymorphism as a possible biomarker for susceptibility to bladder cancer in Japanese. Int. J. Urol. 1999; 6: 44654.
  • 16
    Katoh T, Kaneko S, Boissy R, Watson M, Ikemura K, Bell DA. A pilot study testing the association between N-acetyltransferases 1 and 2 and risk of oral squamous cell carcinoma in Japanese people. Carcinogenesis 1998; 19: 18037.
  • 17
    Chen J, Stampfer MJ, Hough HL et al. A prostective study of N-acetyltransferase genotype, red meat intake, and risk of colorectal cancer. Cancer Res. 1998; 58: 330711.
  • 18
    Grant DM, Hughes NC, Janezic SA et al. Human acetyltransferase polymorphisms. Mutat. Res. 1997; 276: 6170.
  • 19
    Grant DM, Hughes NC, Janezic SA, Sampson H, Darlington G, Jeweet MA. Interindividual variation in cytochrome P4501A1, acetyltransferase NAT1 and NAT2 and risk of bladder cancer: a case control study. Proc. Am. Assoc. Cancer Res. 1998; 39: 455.
  • 20
    Evans DP. N-Acetylyransferase. Pharmacol. Ther. 1989; 42: 157234.
  • 21
    Blum M, Demierre A, Grant DM, Heim M, Meyer UA. Molecular mechanism of slow acetylation of drugs and carcinogens in humans. Proc. Natl Acad. Sci. USA 1991; 88: 523741.
  • 22
    Bell DA, Taylor JA, Butler MA et al. Genotype/phenotype discordance for human arylamine N-acetyltransferase (NAT2) reveals a new slow-acetylator allele common in African-Americans. Carcinogenesis 1993; 14: 168992.
  • 23
    Hickman D, Risch A, Camilleri J, Sim E. Genotyping human polymorphic arylamine N-acetyltransferase: Identification of slow allotypic variants. Phamacogenetics 1992; 2: 21726.
  • 24
    Japanese Urological Association and the Japanese Society of Pathology. General Rule for Clinical and Pathological Studies on Prostate Cancer, 3rd edn. Kanehara Publications. Co, Tokyo, 2001.
  • 25
    Deguchi T, Mashimo M, Suzuki T. Correlation between acetylator phenotype and genotypes of polymorphic arylamine N-acetyltransferase in human liver. J. Biol. Chem. 1990; 267: 181407.
  • 26
    Ross RK, Henderson BE. Do diet and androgens alter prostate cancer risk via a common etiologic pathway? J. Natl Cancer Inst. 1994; 86: 2524.
  • 27
    Kolonel LN. Nutrition and prostate cancer. Cancer Causes Control 1996; 7: 8394.
  • 28
    Nagao M, Shigemura T. Carcinogenetic factors in food with relevance to colon cancer development. Mutat. Res. 1993; 290: 4351.
  • 29
    Shirai T, Sano M, Tamano S et al. The prostate: a target for carcinogenicity of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhlP) derived from cooked foods. Cancer Res. 1997; 57: 1958.
  • 30
    Leff MA, Epstein PN, Doll MA et al. Prostate-specific human N-acetyltransferase 2 (NAT2) expression in the mouse. J. Pharmacol. Exp. Ther. 1999; 290: 1827.
  • 31
    Wang CY, Debice-Rychter M, Schut HA et al. N-acetyltransferase expression and DNA binding N-hydroxyheterocyclic amines in human prostate epithelium. Carcinogenesis 1999; 20: 15015.
  • 32
    Delemenie C, Sica L, Grant DM, Krishnamoorthy R, Dupret JM. Genotyping of polymorphic N-acetyltransferase (NAT2) gene locus in two native African populations. Pharmacogenetics 1996; 6: 17785.
  • 33
    Henry JL, Chun-Ya H, Bruce KL, Steven H. Ethnic distribution of slow acetylator mutations in the polymorphic N-acetyltransferase (NAT2) gene. Pharamacogenetics 1994; 4: 12534.
  • 34
    Rebbeck TR, Walker AH, Jaffe JM, White DL, Wein AJ, Malkowicz SB. Glutathione S-transferase-µ (GSTM1) and θ (GSTT1) genotypes in the etiology of prostate cancer. Cancer Epidemiol. Biomarkers Prev. 1999; 8: 2837.