SEARCH

SEARCH BY CITATION

Keywords:

  • disturbance;
  • germination;
  • restoration;
  • smoke water;
  • topsoil

Summary Recent studies have recognized the potential of broad-scale surface application of smoke compounds for enhancing germination from the soil seed-bank in fire-prone vegetation communities. Results suggest that smoke technology may play, in the future, a significant role in the restoration and management of areas supporting indigenous vegetation. An important step in the development of smoke-based restoration tools is the conduct of in situ field trials in a range of geographical locations and environmental conditions. However, most of the published work on the effectiveness of smoke products in promoting seedbank germination has been conducted at sites in southwestern Australia. The present study examines the effect of commercially available smoke-water products on the regeneration of a highly disturbed former mine-site at the Royal Botanic Gardens Cranbourne, in southeastern Victoria. Various combinations of concentrated smoke products and topsoil harvested from a nearby heathy woodland community were applied to exposed, uniform mineral sands to test their effect on seedling density and species richness of regrowth. The trials showed that after 12 months a number of common, herbaceous species including Austrodanthonia setacea, Opercularia varia and Platysace heterophylla were recorded in significantly higher numbers in areas treated with a commercial smoke-water. However, there was no overall improvement in the density of seedlings or the richness of species as a result of the application of the smoke products. Similarly, total seedling density and species richness were not affected by the addition of topsoil, either alone or in combination with smoke products.