SEARCH

SEARCH BY CITATION

Keywords:

  • Cajal–Retzius cells;
  • calcium-binding proteins;
  • neocortex;
  • neurotrophic factors;
  • rat

Abstract

Calretinin-expressing neurons are some of the earliest postmitotic cells to appear in the developing cerebral cortex. Lineage studies have shown that the expression of this calcium-binding protein in cortical neurons is not genetically programmed and is likely to be induced by external factors. A number of studies have clearly shown that basic fibroblast growth factor (bFGF) and a number of neurotrophins promote the proliferation and differentiation of cortical progenitor cells to a particular lineage. Here, using a culture system of dissociated rat cortical cells, we found that brain-derived neurotrophic factor and neurotrophin-3 promoted the morphological differentiation of one of the calretinin-containing neuronal subpopulations, the Cajal–Retzius cells. Another subpopulation of calretinin-expressing cells of smaller size and bipolar form was generated when cultures were treated with bFGF. The progenitors of these neurons were stimulated by bFGF to divide a number of times before initiating their differentiation programme. The number of calretinin-expressing neurons increased further when cultures were treated with a combination of bFGF and retinoic acid.