• forelimb;
  • scapula;
  • X-ray technique


Co-ordinate movements around the shoulder are essential during reaching movements. We performed a quantitative kinematic analysis of movements of the shoulder girdle: three-dimensional X-ray frames (time resolution 20 ms) were recorded during the target-reaching and food-taking paradigm in five cats either sitting (n = 4) or standing (n = 1) in front of a food well. Movements of the scapula consisted of a flexion of the scapula (anteversion of the glenoid) followed by flexion of the gleno-humeral joint (decrease in the angle between the scapular spine and humerus). In the sitting animals, the gleno-humeral flexion reversed to extension some 120 ms before object contact, while in the standing animal flexion continued during the ongoing scapular flexion. In both cases, the scapula was nearly horizontal at the end of target reaching. The fulcrum for scapular movements was located near the vertebral border of the scapula at the medial elongation of the scapular spine. No major translational components of the fulcrum with respect to the trunk were found during reaching. Together with full flexion of the scapula, this reduces the number of degrees of freedom considerably and thereby probably simplifying the specification of the end-point of the limb chain. End-point specification is further supported by rotational movements of the scapula. In the sitting animal, the amplitude of inward rotation along the long axis of the scapula was around 20 °, while it was much more variable in the standing animal, reflecting more variable starting positions. We hypothesize that the glenoid is used to ‘foveate' the target object.