Astrocytic regulation of the recovery of extracellular potassium after seizures in vivo


J.L. Stringer, as above. E-mail:


Glial cells are believed to play a major role in the regulation of the extracellular potassium concentration ([K+]o), particularly when the [K+]o is increased. Using ion-selective electrodes, we compared the [K+]o changes in the dentate gyrus of urethane-anaesthetized adult rats in the presence of reactive astrocytes and after reduction of glial function. The regulation of [K+]o in the dentate gyrus was determined by measuring the ceiling level of [K+]o and the half-time of recovery of [K+]o during and after seizures produced by 20 Hz trains of stimulation to the angular bundle. Reactive astrocytes were induced by repeated seizures and their presence was confirmed by a qualitative increase in glial fibrillary acidic protein (GFAP) and vimentin immunoreactivity. To inhibit glial function, fluorocitrate (FC), a reversible metabolic inhibitor, or α-aminoadipate (α-AA), an irreversible toxin, was injected into the dentate gyrus region, and the regulation of [K+]o was monitored for 8 h or 2 days later, respectively. After α-aminoadipate, loss of astrocytes in the dentate gyrus was demonstrated by loss of staining for GFAP. In the presence of reactive astrocytes there was no significant change in the peak [K+]o during seizures or the half-time of recovery of [K+]o after seizures compared to control animals. α-Aminoadipate significantly slowed the rate of recovery of [K+]o, but did not change the ceiling [K+]o. Fluorocitrate reversibly decreased the ceiling [K+]o, but also slowed the rate of recovery of [K+]o. Overall our results suggest that normal glial function is required for the recovery of elevated [K+]o after seizures in vivo.