Get access

Differential neuronal responsiveness in primate perirhinal cortex and hippocampal formation during performance of a conditional visual discrimination task


: Dr M. W. Brown, as above. E-mail:


Neuronal responses in the hippocampal formation, including the entorhinal cortex, have been compared with those in the inferior temporal cortex, including the perirhinal cortex, during performance by monkeys of a visual conditional discrimination task. In the task, the arrangement of three geometric shapes determined the correctness of either a left or right behavioural response according to a conditional rule. Neurons that responded differently to different types of trial were common (50% of the visually responsive neurons) in the entorhinal cortex, perirhinal cortex and area TE of the inferior temporal cortex, but significantly less common in the hippocampus (13%). This differential incidence suggests a more important role for the rhinal cortices and area TE than for the hippocampus in this task. Based on the neuronal responses, arguments are advanced that the animals probably solved the task by a strategy that did not require spatial or hippocampal processing. Thus, of the differential responses, those that would allow the animals to solve the task by using a conditional rule and so avoid spatial processing were twice as common (37%) as those allowing solution to be by selection of a particular spatially directed response to each arrangement of shapes (19%). Moreover, the differential latencies of responses that allowed the task to be solved by a conditional rule were shorter (< ∼ 165 ms), and hence processing was faster, than those that provided information about particular individual types of trial (∼ 195 ms). Even so, hippocampal responsiveness in the conditional task was differentially enhanced when compared with that during a recognition memory task, and the neuronal responses potentially allow the animal to employ a second, alternative strategy that might be expected to depend on hippocampal processing.