Does the migraine aura reflect cortical organization?

Authors

  • M. A. Dahlem,

    1. Otto-von-Guericke-Universität Magdeburg, Institut für Experimentelle Physik, Abteilung Biophysik, Universitätsplatz 2, D-39016 Magdeburg, Germany
    2. Leibniz-Institut für Neurobiologie (IfN), Zentrum für Lern- und Gedächtnisforschung, Forschergruppe: Visuelle Entwicklung und Plastizität, Brenneckestraße 6, D-39118 Magdeburg, Germany
    Search for more papers by this author
  • R. Engelmann,

    1. Leibniz-Institut für Neurobiologie (IfN), Zentrum für Lern- und Gedächtnisforschung, Forschergruppe: Visuelle Entwicklung und Plastizität, Brenneckestraße 6, D-39118 Magdeburg, Germany
    Search for more papers by this author
  • S. Löwel,

    1. Leibniz-Institut für Neurobiologie (IfN), Zentrum für Lern- und Gedächtnisforschung, Forschergruppe: Visuelle Entwicklung und Plastizität, Brenneckestraße 6, D-39118 Magdeburg, Germany
    Search for more papers by this author
  • S. C. Müller

    1. Otto-von-Guericke-Universität Magdeburg, Institut für Experimentelle Physik, Abteilung Biophysik, Universitätsplatz 2, D-39016 Magdeburg, Germany
    Search for more papers by this author

: Markus Dahlem, at 1Otto-von-Guericke-Universität Magdeburg, as above.
E-mail: dahlem@physik.uni-magdeburg.de

Abstract

Individuals suffering from classical migraine report an astonishing diversity of migraine auras. A frequently reported symptom is a visual hallucination known as fortification illusion (FI). Here we demonstrate that the typical zig-zag pattern of the FI can be reproduced using experimental data of orientation maps of the primary visual cortex (V1) assuming that a continuous excitation front propagates across V1. We put forward a model in which the cortical neurons within this excitation wave are activated sufficiently to contribute to conscious perception. It is shown that the discontinuous repetitive nature of the zig-zag pattern of the FI can reflect the specific layout of visual cortical orientation maps. Additionally, dynamic features of the FI are predicted based on our model.

Ancillary