SEARCH

SEARCH BY CITATION

Keywords:

  • antioestrogen;
  • Cl channel;
  • GABAA receptor;
  • glycine receptor;
  • multidrug resistance

Abstract

Dideoxyforskolin, a forskolin analogue unable to stimulate adenylate cyclase, and tamoxifen, an antioestrogen widely used against breast cancer, are both known to block some Cl channels. Their effects on Cl responses to glycine or GABA have been tested here by using whole-cell recording from cultured spinal neurons. Dideoxyforskolin (4 or 16 µm) and tamoxifen (0.2–5 µm) both potentiate responses to low glycine concentrations. They also induce blocking effects, predominant at high glycine concentrations. At 5 µm, tamoxifen increased responses to 15 µm glycine by a factor >4.5, reaching 20 in some neurons. Potentiation by extracellular dideoxyforskolin or tamoxifen persisted after intracellular application of the modulator and was not due to Zn2+ contamination. Potentiation by tamoxifen also persisted in a Ca2+-free extracellular solution, after intracellular Ca2+ buffering and protein kinase C blockade. Thus, the critical sites of action are not intracellular. The EC50 for glycine was lowered 6.6-fold by 5 µm tamoxifen. The kinetics and voltage-dependence of the effects of tamoxifen on glycine responses support the idea that this hydrophobic drug may act from a site located within the membrane. Tamoxifen (5 µm) also increased responses to 2 µm GABA by a factor of 3.5, but barely affected peak responses to 20 µm GABA. The demonstration that tamoxifen affects some of the main inhibitory receptors should be useful for better evaluating its neurological effects. Furthermore, the results identify a new class of molecules that potentiate glycine receptor function.