• genistein;
  • herbimycin A;
  • IL-1β;
  • nonreceptor tyrosine kinase;
  • PP2


Increased synthesis of substance P (SP) in the dorsal root ganglia (DRG) and enhanced axonal transport to and secretion from the primary afferent sensory neurons might enhance pain signalling in the spinal dorsal horn by modifying pronociceptive pathways. IL-1β increases SP synthesis by enhancing the expression of preprotachykinin (PPT) mRNA encoding for SP and other tachykinins in the DRG. Stimulation of IL-1 receptor by IL-1β may induce the phosphorylation of tyrosine residues in many effector proteins through the activation of p60c-src kinase. The hypothesis that the synthesis of SP in and secretion from the primary sensory ganglia are regulated by the activation of p60c-src kinase induced by IL-1β was tested. Pretreatment of DRG neurons in culture with herbimycin A, genistein or PP2, three structurally different nonreceptor tyrosine kinase inhibitors that act by different mechanisms, decreased the kinase activity of p60c-src induced by the activation of IL-1 receptor. PP3, a negative control for the Src family of tyrosine kinase inhibitor PP2 had no effect. Herbimycin A and genistein also decreased IL-1β-induced expression of PPT mRNA-encoding transcripts and the levels of SP-li synthesized in the cells and secreted into the culture medium in a concentration-dependent manner. SB 203580 [a p38 mitogen-activated protein kinase (p38 MAPK) inhibitor] and PD 98059 (a p44/42 MAPK kinase inhibitor) were ineffective in modulating IL-1β-induced SP synthesis and secretion, and p60c-src kinase activity in DRG neurons. Whereas, IL-1 receptor antagonist and cycloheximide inhibited IL-1β-evoked secretion of SP-like immunoreactivity (SP-li), actinomycin D decreased it significantly but did not entirely abolish it. These findings show that phosphorylation of specific protein tyrosine residue(s) following IL-1 receptor activation might play a key role in IL-1β signalling to modulate PPT gene expression and SP secretion in sensory neurons. In view of the role of SP as an immunomodulator, these studies provide a new insight into neural-immune intercommunication in pain regulation in the sensory ganglia through the IL-1β-induced p60c-src activation.