SEARCH

SEARCH BY CITATION

Keywords:

  • dorsal root;
  • GABA;
  • glycine;
  • motoneuron

Abstract

While group I glutamate metabotropic (mGlu) receptors show discrete neuronal distribution in the neonatal rat spinal cord, the functional role of their distinct receptor subtypes remains uncertain. Intracellular recording from lumbar motoneurons together with extracellular recording of ventral root (VR) responses was used to investigate the differential contribution by mGlu receptor subtypes to cell excitability and network activity. The group I agonist DHPG evoked motoneuron depolarization (via the AIDA or CPCCOEt-sensitive mGlu receptor subtype 1) mainly at network level and generated sustained, network-dependent oscillations (via the MPEP-sensitive mGlu receptor subtype 5). DHPG also decreased the peak amplitude of synaptic responses induced by dorsal root stimuli, an effect unrelated to depolarization and dependent on glycinergic transmission. Synaptic responses were insensitive to AIDA or MPEP. The present results can be explained by assuming excitation of discrete classes of interneurons by group I mGlu receptor activity. Thus, the cellular distribution of those mGlu receptors at strategic circuit connections may determine the functional outcome of the network in terms of excitation or inhibition. Even if there was insufficient activation by endogenous glutamate of mGlu receptors during synaptic activity evoked by DR stimuli, it is apparent that such receptors are important pharmacological targets for powerful and rapid up- or down-regulation of spinal signal processing at network level, providing a rationale for the proposed use of mGlu receptor agonists in a variety of spinal pathological conditions.