Dispersal and spatial scale affect synchrony in spatial population dynamics


EmmanuelParadis Laboratoire de Palaeontologie, Institut des Sciences de l’évolution, Université Montpellier II, F-34095 Montpellier cédex 05, France. E-mail:


A large body of theoretical studies has shown that synchrony among populations is critical for the long-term persistence of species in fragmented habitats. Although the effects of dispersal and environmental factors on synchrony have been investigated theoretically, empirical studies of these relationships have been lacking. We explored the interplay between environmental and demographic factors (fecundity, survival, dispersal) on population synchrony for 53 species of birds. We show that the interspecific differences in mean synchrony were determined by global environmental factors whose action was probably mediated by the abundance of each species. After removing the effect of these global factors on synchrony, the residual synchrony was strongly correlated with dispersal distance. The relationship between dispersal and synchrony was stronger for the species nesting in wet habitats than for those nesting in dry habitats. Our results indicate that different factors synchronize bird populations at different spatial scales, thus highlighting the role of scale in understanding spatial population dynamics and extinction risks.