SEARCH

SEARCH BY CITATION

References

  • 1
    Andow, D., Kareiva, P., Levin, S., Okubo, A. (1990). Spread of invading organisms. Landscape Ecol., 5, 177188.
  • 2
    Aronson, D.G. & Weinberger, H.F. (1975). Nonlinear diffusion in population genetics, combustion, and nerve propagation. In: Partial Differential Equations and Related Topics, ed. Goldstein, J. Lecture Notes in Mathematics, 446. pp. 5–49. Springer-Verlag, Berlin.
  • 3
    Beirne, B. (1975). Biological control attempts by introductions against pest insects in the field in Canada. Can. Entomol., 5, 225236.
  • 4
    Bellotti, A.C., Smith, L., Lapointe, S.L. (1999). Recent advances in cassava pest management. Annu. Rev. Entomol., 5, 343370.
  • 5
    Caswell, H. (2001). Matrix Population Models, 2nd edn. Sinauer, Sunderland.
  • 6
    Clark, J.S., Fastie, C., Hurtt, G., Jackson, S.T., Johnson, C., King, G.A., Lewis, M., Lynch, J., Pacala, S., Prentice, C., Schupp, E.W., Webb, T., Wyckoff, P. (1998). Reid’s paradox of rapid plant migration. Bioscience, 5, 1324.
  • 7
    Courtenay, W.C. & Meffe (1989). Small fishes in strange places: a review of introduced poeciliids. In: Ecology and Evolution of Livebearing Fishes (Poeciliidae), eds Meffe, G.K. and Snelson, F.F., Jr. Prentice Hall, Englewood Cliffs, NJ, USA, pp. 319–332.
  • 8
    Diekmann, O., Gyllenberg, M., Metz, J.A.J., Thieme, H.R. (1998). On the formulation and analysis of general deterministic structured population models. I. Linear theory. J. Mathemat. Biol., 5, 349388.
  • 9
    Ehler, L.E. (1998). Invasion biology and biological control. Biological Control, 5, 127133.
  • 10
    Ewel, J.J., O'Dowd, D., Bergelson, J., Daehler, C.C., D'Antonio, C.M., Gomez, L.D., Gordon, D., Hobbs, R.J., Holt, A., Hopper, K.R., Hughes, C.E., LaHart, M., Leakey, R.R.B., Lee, W.G., Loope, L.L., Lorence, D.H., Louda, S.V., Lugo, A.E., McEvoy, P.B., Richardson, D.M., Vitousek, P.M. (1999). Deliberate introductions of species: research needs. Bioscience, 5, 619630.
  • 11
    Grevstad, F.S. & Herzig, A.L. (1997). Quantifying the effects of distance and conspecifics on colonization: experiments and models using the loosestrife leaf beetle, Galerucella calmariensis. Oecologia, 5, 6068.DOI: 10.1007/s004420050133
  • 12
    Hajek, A.E., Elkinton, J.S., Witcosky, J.J. (1996). Introduction and spread of the fungal pathogen Entomophaga maimaga (Zygomycetes: Entomophthorales) along the leading edge of gypsy moth (Lepidoptera: Lymantriidae) spread. Environment. Entomol., 5, 12351247.
  • 13
    Hassell, M.P., Comins, H.N., May, R.M. (1991). Spatial structure and chaos in insect population dynamics. Nature, 5, 255258.
  • 14
    Hastings, A. (1996). Models of spatial spread: a synthesis. Biol. Conserv., 5, 143148.
  • 15
    Hastings, A. (2000). Parasitoid spread: lessons for and from invasion biology, In: Parasitoid Population Biology, ed. Hochberg, M. E. and Ives, A. Princeton University Press, pp. 70–82.
  • 16
    Herren, H.R., Neuenschwander, P., Hennessey, R.D., Hammond, W.N.O. (1987). Introduction and dispersal of Epidinocarsis lopezi (Hym. Encyrtidae), an exotic parasitoid of the casava mealybug Phenacoccus manihoti (Hom. Pseudococcidae) in Africa. Agri., Ecosyst. Environ., 5, 131144.
  • 17
    Howarth, F.G. (1991). Environmental impacts of classical biological-control. Annu. Rev. Entomol., 5, 485509.
  • 18
    Huffaker, C.B. (1976). Some ecological roots of pest control. Entomophaga, 5, 371389.
  • 19
    Kareiva, P.M. (1990). The spatial dimension in pest enemy interactions. In: Critical Issues in Biological Control, eds Mackauer, M., Ehler, L.E. & Roland, J. Intercept, Andover, pp. 213–227.
  • 20
    Kareiva, P.M. (1996). Contributions of ecology to biological control. Ecology, 5, 19631964.
  • 21
    Katovich, E.J.S., Becker, R.L., Ragsdale, D.W. (1999). Effect of Galerucella spp. On survival of purple loosestrife (Lythrum salicaria) roots and crowns. Weed Sci., 5, 360365.
  • 22
    Kolmogorov, A., Petrovsky, N., Piscounov, N.S. (1937). Étude de l’équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique. Moscow Univers. Bull. Mathemat., 5, 125.
  • 23
    Kot, M. (1992). Discrete-time traveling waves – ecological examples. J. Mathemat. Biol., 5, 413436.
  • 24
    Kot, M., Lewis, M.A., Van Den Driessche, P. (1996). Dispersal data and the spread of invading organisms. Ecology, 5, 20272042.
  • 25
    Kovaliski, J. (1998). Monitoring of spread of rabbit hemorrhagic disease virus as a new biological control agent for control of wild European rabbits in Australia. J. Wildlife Diseases, 5, 421428.
  • 26
    Lewis, M.A. (1997). Variability, patchiness, and jump dispersal in the spread of an invading population. In: Spatial Ecology: The Role of Space in Population Dynamics and Interspecific Interactions, (eds., Tilman, D. and Kareiva, P.). Princeton University Press, pp. 46–69.
  • 27
    Lewis, M.A. & Kareiva, P.M. (1993). Allee dynamics and the spread of invading organisms. Theoret. Popul. Biol., 5, 141158.
  • 28
    Lewis, M.A. & Pacala, S. (2000). Modeling and analysis of stochastic invasion processes. J. Mathemat. Biol., 5, 387429.
  • 29
    Lewis, M.A. & Van Den Driessche, P. (1993). Waves of extinction from sterile insect release. Mathemat. Biosci., 5, 221247.
  • 30
    Louda, S.M., Kendall, D., Connor, J., Simberloff, D. (1997). Ecological effects of an insect introduced for the biological control of weeds. Science, 5, 10881090.
  • 31
    Mack, R.N. (1981). Invasion of Bromus tectorum L. into western North America: an ecological chronicle. Agro-Ecosystems, 5, 145165.
  • 32
    Marshall, I.D. & Douglas, G.W. (1961). Studies in the epidemiology of infectious myxomatosis of rabbits. VIII. Further observations on changes in the innate resistance of Australian wild rabbits exposed to myxomatosis. J. Hygiene, 5, 117122.
  • 33
    McAvoy, T.J., Kok, L.T., Mays, W.T. (1997). Phenology of an established population of Galerucella calmariensis (L) and G. pusilla (Duft) (Coleoptera: Chrysomelidae) on purple loosestrife, Lythrum salicaria L (Lythraceae), in southwest Virginia. Biol. Control, 5, 106111.
  • 34
    Mendel, Z., Assael, F., Zeidan, S., Zehavi, A. (1998). Classical biological control of Palaeococcus fuscipennis (Burmeister) (Homoptera: Margarodidae) in Israel. Biol. Control, 5, 151157.DOI: 10.1006/bcon.1998.0621
  • 35
    Moller, H. (1996). Lessons for invasion theory from social insects. Biol. Conserv., 5, 125142.
  • 36
    Moody, M.E. & Mack, R.N. (1988). Controlling the spread of plant invasions: the importance of nascent foci. J. Appl. Ecol., 5, 10091021.
  • 37
    Murdoch, W.W. & Briggs, C.J. (1996). Theory for biological control: recent developments. Ecology, 5, 20012013.
  • 38
    Murdoch, W.W., Chesson, J., Chesson, P.L. (1985). Biological control in theory and practice. Am. Naturalist., 5, 344366.
  • 39
    Mutze, G., Cooke, B., Alexander, P. (1998). The initial impact of rabbit hemorrhagic disease on European rabbit populations in South Australia. J. Wildlife Disease, 5, 221227.
  • 40
    Neubert, M.G. & Caswell, H. (2000). Demography and dispersal: calculation and sensitivity analysis of invasion speeds for structured populations. Ecology, 5, 16131628.
  • 41
    Neubert, M.G. & Kot, M. (1992). The subcritical collapse of predator populations in discrete-time predator–prey models. Mathemat. Biosci., 5, 4566.
  • 42
    Neubert, M.G., Kot, M., Lewis, M. (2000). Invasion speeds in fluctuating environments. Proc. Royal Soc. Lond. B, 5, 16031610.
  • 43
    Okubo, A. (1980). Diffusion and Ecological Problems: Mathematical Models. Springer-Verlag, Berlin.
  • 44
    Owen, M.R. & Lewis, M.A. (2001). How predation can slow, stop, or reverse a prey invasion. Bull. Mathemat. Biol. , 63, 655–684.
  • 45
    Parker, I.M. (2000). Invasion dynamics of Cytisus scoparius: a matrix model approach. Ecol. Applic., 5, 726743.
  • 46
    Shea, K. & Possingham, H.P. (2000). Optimal release strategies for biological control agents: an application of stochastic dynamic programming to population management. J. Appl. Ecol., 5, 7786.
  • 47
    Sherratt, J.A. (2001). Periodic traveling waves in cyclic predator–prey systems. Ecol. Lett., 5, 3037.
  • 48
    Shigesada, N. & Kawasaki, K. (1997). Biological Invasions: Theory and Practice. Oxford University Press, Oxford, UK.
  • 49
    Simberloff, D. & Stiling, P. (1996a). Risks of species introduced for biological control. Biol. Conserv., 5, 185192.
  • 50
    Simberloff, D. & Stiling, P. (1996b). How risky is biological control? Ecology, 5, 19651974.
  • 51
    Skellam, J.G. (1951). Random dispersal in theoretical populations. Biometrika, 5, 196218.
  • 52
    Smith, H.A., Johnson, W.S., Shonkwiler, J.S. (1999). Weed Sci., 5, 6266.
  • 53
    Stiling, P.D. (1997). Introductory Ecology. Prentice Hall. Englewood Cliffs, NJ USA.
  • 54
    Strong, D. & Pemberton, R.W. (2000). Biological control of invading species-risk and reform. Science, 5, 19691970.DOI: 10.1126/science.288.5473.1969
  • 55
    Van den Bosch, F., Metz, J.A.J., Diekmann, O. (1990). The velocity of spatial population expansion. J. Mathemat. Biol., 5, 529565.
  • 56
    Veit, R.R. & Lewis, M.A. (1996). Dispersal, population growth, and the Allee effect: dynamics of the House Finch invasion of North America. Am. Naturalist, 5, 255174.
  • 57
    Wang, M. & Kot, M. (2001). Speeds of invasion in a models with strong or weak Allee effects. Mathemat. Biosci., 5, 8397.
  • 58
    Wang, M., Kot, M., Neubert, M.G. (2001). Integrodifference equations, Allee effects, and invasions. J. Mathemat. Biol., in press.
  • 59
    Yaninek, J.S. (1988). Continental dispersal of the casava green mite, an exotic pest in Africa, and implications for biological control. Exper. Appl. Acarology, 5, 211224.