SEARCH

SEARCH BY CITATION

References

  • Agrell, J., McDonald, E.P. & Lindroth, R.L. (1999) Responses to defoliation in deciduous trees: effects of CO2 and light. Ecological Bulletins, 47, 8495.
  • Agrell, J., McDonald, E.P. & Lindroth, R.L. (2000) Effects of CO2 and light on tree phytochemistry and insect performance. Oikos, 88, 259272.
  • Auerbach, M. (1991) Relative impact of interactions within and between trophic levels during an insect outbreak. Ecology, 72, 15991608.
  • Auerbach, M. & Alberts, J.D. (1992) Occurrence and performance of the aspen blotch miner, Phyllonorycter salicifoliella, on three host-tree species. Oecologia, 89, 19.
  • Bezemer, T.M. & Jones, T.H. (1998) Plant–insect herbivore interactions in elevated atmospheric CO2: quantitative analyses and guild effects. Oikos, 82, 212222.
  • Bortier, K., Ceulemans, R. & De Temmerman, L. (2000) Effects of tropospheric ozone on woody plants. Environmental Pollution and Plant Responses (ed. by S. B.Agrawal and M.Agrawal), pp. 153182. CRC Press, Boca Raton, FL.
  • Bücker, J. & Ballach, H.-J. (1992) Alterations in carbohydrate levels in leaves of Populus due to ambient air pollution. Physiologia Plantarum, 86, 512517.
  • Ceulemans, R. & Mousseau, M. (1994) Effects of elevated atmospheric CO2 on woody plants. New Phytologist, 127, 425446.
  • Chameides, W.L., Kasibhatla, P.S., Yienger, J. & Levy, H.I. (1994) Growth of continental-scale metro-agro-plexes, regional ozone pollution, and world food production. Science, 264, 7477.
  • Chappelka, A.H., Kraemer, M.E., Mebrahtu, T., Rangappa, M. & Benepal, P.S. (1988) Effects of ozone on soybean resistance to the Mexican bean beetle (Epilachna varivestis Mulsant). Environmental and Experimental Botany, 28, 5360.
  • Coleman, J.S. & Jones, C.G. (1988) Plant stress and insect performance: cottonwood, ozone and a leaf beetle. Oecologia, 76, 5761.
  • Coviella, C.E. & Trumble, J.T. (1999) Effects of elevated atmospheric carbon dioxide on insect–plant interactions. Conservation Biology, 13, 700712.
  • Dickson, R.E., Lewin, K.F., Isebrands, J.G., Coleman, M.D., Heilman, W.E., Riemenschneider, D.E., Sober, J., Host, G.E., Hendrey, G.R., Pregitzer, K.S., Karnosky, D.F. & Zak, D.R. (2000) Forest Atmosphere Carbon Transfer and Storage (FACTS-II) – The Aspen Free-air CO2 and O3 Enrichment (FACE) Project: an Overview. General Technical Report NC-214. USDA Forest Service, North Central, St Paul, MN.
  • Docherty, M., Hurst, D.K., Holopainen, J.K., Whittaker, J.B., Lea, P.J. & Watt, A.D. (1996) Carbon dioxide-induced changes in beech foliage cause female beech weevil larvae to feed in a compensatory manner. Global Change Biology, 2, 335341.
  • Eigenbrode, S.D. & Espelie, K.E. (1995) Effects of plant epicuticular lipids on insect herbivores. Annual Review of Entomology, 40, 171194.
  • Filion, M., Dutilleul, P. & Potvin, C. (2000) Optimum experimental design for Free-Air Carbon dioxide (FACE) studies. Global Change Biology, 6, 843854.
  • Fowler, D., Cape, J.N., Coyle, M., Flechard, C., Kuylenstierna, J., Hicks, K., Derwent, D., Johnson, C. & Stevenson, D. (1999) The global exposure of forests to air pollutants. Water, Air and Soil Pollution, 116, 532.
  • Friend, A.L. & Tomlinson, P.T. (1992) Mild ozone exposure alters 14C dynamics in foliage of Pinus taeda L. Tree Physiology, 11, 3547.
  • Grams, T.E.E., Anegg, S., Haberle, K.H., Langebartels, C. & Matyssek, R. (1999) Interactions of chronic exposure to elevated CO2 and O3 levels in the photosynthetic light and dark reactions of European beech (Fagus sylvatica). New Phytologist, 144, 95107.
  • Gunthardt-Goerg, M.S., Matyssek, R., Scheidegger, C. & Keller, T. (1993) Differentiation and structural decline in the leaves and bark of birch (Betula pendula) under low ozone concentrations. Trees: Structure and Function, 7, 104114.
  • Houghton, J.T., Meira Filho, L.G., Callander, B.A., Harris, N., Kattenberg, A. & Maskel, K., eds. (1996) Climate Change 1995. Cambridge University Press, Cambridge.
  • Jackson, D.M., Heagle, A.S. & Eckel, R.V.W. (1999) Ovipositional response of tobacco hornworm moths (Lepidoptera: Sphingidae) to tobacco plants grown under elevated levels of ozone. Environmental Entomology, 28, 566571.
  • Jackson, D.M., Rufty, T.W., Heagle, A.S., Severson, R.F. & Eckel, R.V.W. (2000) Survival and development of tobacco hornworm larvae on tobacco plants grown under elevated levels of ozone. Journal of Chemical Ecology, 26, 119.
  • Jones, C.G. & Coleman, J.S. (1988) Plant stress and insect behavior: cottonwood, ozone and the feeding and oviposition preference of a beetle. Oecologia, 76, 5156.
  • Karnosky, D.F., Gagnon, Z.E., Dickson, R.E., Coleman, M.D., Lee, E.H. & Isebrands, J.G. (1996) Changes in growth, leaf abscission, and biomass associated with seasonal tropospheric ozone exposures of Populus tremuloides clones and seedlings. Canadian Journal of Forest Research, 26, 2337.
  • Karnosky, D.F., Mankovska, B., Percy, K., Dickson, R.E., Podila, G.K., Sober, J., Noormets, A., Hendrey, G., Coleman, M.D., Kubiske, M., Pregitzer, K.S. & Isebrands, J.G. (1999) Effects of tropospheric O3 on trembling aspen and interaction with CO2: results from an O3-gradient and a FACE experiment. Water, Air and Soil Pollution, 116, 311322.
  • Kinney, K.K., Lindroth, R.L., Jung, S.M. & Nordheim, E.V. (1997) Effects of CO2 and NO3- availability on deciduous trees: phytochemistry and insect performance. Ecology, 78, 215230.
  • Kopper, B.J. & Lindroth, R.L. (2001) CO2 and O3 effects on paper birch (Betulaceae: Betula papyrifera Marsh.) phytochemistry and whitemarked tussock moth (Lymantriidae: Orgyia leucostigma J. E. Sm.) performance. Environmental Entomology, 30, 11191126.
  • Koricheva, J., Larsson, S., Haukioja, E. & Keinänen, M. (1998) Regulation of woody plant secondary metabolism by resource availability: hypothesis testing by means of meta-analysis. Oikos, 83, 212226.
  • Kull, O., Sober, A., Coleman, M.D., Dickson, R.E., Isebrands, J.G., Gagnon, Z. & Karnosky, D.F. (1996) Photosynthetic responses of aspen clones to simultaneous exposures of ozone and CO2. Canadian Journal of Forest Research, 26, 639648.
  • Lavola, A., Julkunen-Tiitto, R. & Pääkkönen, E. (1994) Does ozone stress change the primary or secondary metabolites of birch (Betula pendula Roth)? New Phytologist, 126, 637642.
  • Lincoln, D.E., Fajer, E.D. & Johnson, R.H. (1993) Plant–insect herbivore interactions in elevated CO2 environments. Trends in Ecology and Evolution, 8, 6468.
  • Lindroth, R.L. (1996a) Consequences of elevated atmospheric CO2 for forest insects. Carbon Dioxide and Terrestrial Ecosystems (ed. by G. W.Koch and H. A.Mooney), pp. 105120. Academic Press, San Diego.
  • Lindroth, R.L. (1996b) CO2-mediated changes in tree chemistry and tree–Lepidoptera interactions. Carbon Dioxide, Populations, and Communities (ed. by C.Körner and F. A.Bazzaz), pp. 347361. Academic Press, San Diego.
  • Lindroth, R.L., Arteel, G.E. & Kinney, K.K. (1995) Responses of three saturniid species to paper birch grown under enriched CO2 atmospheres. Functional Ecology, 9, 306311.
  • Lindroth, R.L., Hsia, M.T.S. & Scriber, J.M. (1987) Characterization of phenolic glycosides from quaking aspen. Biochemical Systematics and Ecology, 15, 677680.
  • Lindroth, R.L. & Kinney, K.K. (1998) Consequences of enriched atmospheric CO2 and defoliation for foliar chemistry and gypsy moth performance. Journal of Chemical Ecology, 24, 16771695.
  • Lindroth, R.L., Kopper, B.J., Parsons, W.F.J., Bockheim, J.G., Karnosky, D.F., Hendry, G.R., Pregitzer, K.S., Isebrands, J.G. & Sober, J. (2001a) Effects of elevated carbon dioxide and ozone on foliar chemical composition and dynamics in trembling aspen (Populus tremuloides) and paper birch (Betula papyrifera). Environmental Pollution, 115, 395404.
  • Lindroth, R.L., Osier, T.L., Wood, S.A. & Barnhill, H.R.A. (2002a) Effects of genotype and nutrient availability on phytochemistry of trembling aspen (Populus tremuloides Michx.) during leaf senescence. Biochemical Systematics and Ecology, 30, 297307.
  • Lindroth, R.L., Roth, S. & Nordheim, E.V. (2001b) Genotypic variation in response of quaking aspen (Populus tremuloides) to atmospheric CO2 enrichment. Oecologia, 126, 371379.
  • Lindroth, R.L., Wood, S.A. & Kopper, B.J. (2002b) Response of quaking aspen genotypes to enriched CO2: foliar chemistry and tussock moth performance. Agricultural and Forest Entomology, 4, 315323.
  • Littell, R.C., Milliken, G.A., Stroup, W.W. & Wolfinger, R.D. (1996) SAS System for Mixed Models. SAS Institute Inc, Cary, NC.
  • Mansfield, J.L., Curtis, P.S., Zak, D.R. & Pregitzer, K.S. (1999) Genotypic variation for condensed tannin production in trembling aspen (Populus tremuloides, Salicaceae) under elevated CO2 and in high- and low-fertility soil. American Journal of Botany, 86, 11541159.
  • Martin, J.L. (1956) The bionomics of the aspen blotch miner, Lithocolletis salicifoliella Cham. (Lepidoptera: Gracillaridae). Canadian Entomologist, 88, 155168.
  • Mattson, W.J. Jr (1980) Herbivory in relation to plant nitrogen content. Annual Review of Ecology and Systematics, 11, 119161.
  • McDonald, E.P., Agrell, J. & Lindroth, R.L. (1999) CO2 and light effects on deciduous trees: growth, foliar chemistry, and insect performance. Oecologia, 119, 389399.
  • Milliken, G.A. & Johnson, D.E. (1984) Analysis of Messy Data, Vol. 1: Designed Experiments. Van Nostrand Reinhold Co., Inc, New York.
  • Norby, R.J., Wullschleger, S.D., Gunderson, C.A., Johnson, D.W. & Ceulemans, R. (1999) Tree responses to rising CO2 in field experiments: implications for the future forest. Plant, Cell and Environment, 6, 683714.
  • Palo, R.T. (1984) Distribution of birch (Betula spp.), willow (Salix spp.), and poplar (Populus spp.) secondary metabolites and their potential role as chemical defense against herbivores. Journal of Chemical Ecology, 10, 499520.
  • Pell, E.J., Landry, L.G., Eckardt, N.A. & Glick, R.E. (1994) Air pollution and Rubisco: effects and implications. Plant Responses to the Gaseous Environment (ed. by R. G.Alscher and A. R.Wellburn), pp. 239254. Chapman & Hall, London.
  • Pinkerton, J.E. & Lefohn, A.S. (1987) The characterization of ozone data for sites located in forested areas of the eastern United States. Journal of Air Pollution Control Association, 37, 10051010.
  • Porter, L.J., Hrstich, L.N. & Chan, B.G. (1986) The conversion of procyanidins and prodelphinidins to cyanidin and delphinidin. Phytochemistry, 25, 223230.
  • Prado, F.E., González, J.A., Boero, C. & Sampietro, A.R. (1998) A simple and sensitive method for determining reducing sugars in plant tissues. Application to quanepsy the sugar content in quinoa (Chenopodium quinoa Willd.) seedlings. Phytochemical Analysis, 9, 5862.
  • Riemer, J. & Whittaker, J.B. (1989) Air pollution and insect herbivores: observed interactions and possible mechanisms. Insect–Plant Interactions (ed. by E. A.Bernays), pp. 73105. CRC Press, Boca Raton, FL.
  • Roth, S.K. & Lindroth, R.L. (1994) Effects of CO2-mediated changes in paper birch and white pine chemistry on gypsy moth performance. Oecologia, 98, 133138.
  • Roth, S., Lindroth, R.L., Volin, J.C. & Kruger, E.L. (1998) Enriched atmospheric CO2 and defoliation: effects on tree chemistry and insect performance. Global Change Biology, 4, 419430.
  • Roth, S., McDonald, E.P. & Lindroth, R.L. (1997) Atmospheric CO2 and soil water availability: consequences for tree–insect interactions. Canadian Journal of Forest Research, 27, 12811290.
  • Salt, D.T., Brooks, G.L. & Whittaker, J.B. (1995) Elevated carbon dioxide affects leaf-miner performance and plant growth in docks (Rumex spp). Global Change Biology, 1, 153156.
  • Saxe, H., Ellsworth, D.S. & Heath, J. (1998) Tree and forest functioning in an enriched CO2 atmosphere. New Phytologist, 139, 395436.
  • Smith, P.H.D. & Jones, T.H. (1998) Effects of elevated CO2 on the chrysanthemum leaf-miner, Chromatomyia syngenesiae: a greenhouse study. Global Change Biology, 4, 287291.
  • Stange, G. (1997) Effects of changes in atmospheric carbon dioxide on the location of hosts by the moth, Cactoblastis cactorum. Oecologia, 110, 539545.
  • Stange, G., Monro, J., Stowe, S. & Osmond, C.B. (1995) The CO2 sense of the moth Cactobastis cactorum and its possible role in the biological control of the CAM plant Opuntia stricta. Oecologia, 102, 341352.
  • Stiling, P., Rossi, A.M., Hungate, B., Dijkstra, P., Hinkle, C.R., Knott, W.M. & Drake, B. (1999) Decreased leaf-miner abundance in elevated CO2: reduced leaf quality and increased parasitoid attack. Ecological Applications, 9, 240244.
  • Takeuchi, Y., Kubiske, M.E., Karnosky, D.F., Pregitzer, K.S., Isebrands, J.G. & Hendrey, G. (2001) Photosynthesis, light and nitrogen interrelationships throughout a young Populus tremuloides canopy under open-air CO2 enrichment. Plant, Cell and Environment, 24, 12571268.
  • Thompson, G.B. & Drake, B.G. (1994) Insects and fungi on a C3 sedge and a C4 grass exposed to elevated atmospheric CO2 concentrations in open-top chambers in the field. Plant, Cell and Environment, 17, 11611167.
  • Trumble, J.T., Hare, J.D., Musselman, R.C. & McCool, P.M. (1987) Ozone-induced changes in host–plant suitability: interactions of Keiferia lycopersicella and Lycopersicon esculentum. Journal of Chemical Ecology, 13, 203218.
  • Volin, J.C. & Reich, P.B. (1996) Interaction of elevated CO2 and O3 on growth, photosynthesis and respiration of three perennial species grown in low and high nitrogen. Physiologia Plantarum, 97, 674684.
  • Volin, J.C., Reich, P.B. & Givnish, T.J. (1998) Elevated carbon dioxide ameliorates the effects of ozone on photosynthesis and growth: species respond similarly regardless of photosynthetic pathway or plant functional group. New Phytologist, 138, 315325.
  • Watt, A.D., Whittaker, J.B., Docherty, M., Brooks, G., Lindsay, E. & Salt, D.T. (1995) The impact of elevated atmospheric CO2 on insect herbivores. Insects in a Changing Environment (ed. by R.Harrington and N. E.Stork), pp. 197217. Academic Press, New York.