SEARCH

SEARCH BY CITATION

References

  • Badiani, K., Byers, D.M., Cook, H.W., Ridgway, N.D. (1996) Effect of fumonisin B1 on phosphatidylethanolamine biosynthesis in Chinese hamster ovary cells. Biochim Biophys Acta 1304: 190–196.
  • Bligh, E.G. & Dyer, W.J. (1959) A rapid method of total lipid extraction and purification. Can J Biochem Biophys 37: 911–917.
  • Braunwald, E. (1998) Harrisonís Principals of Internal Medicine, 14th edn. Braunwald, E. (ed.). New York : McGraw-Hill Book Company.
  • Chen, C.-S., Rosenwald, A.G., Pagano, R.E. (1995) Ceramide as a modulator of endocytosis. J Biol Chem 270: 13291–13297.
  • Hackstadt, T., Scidmore, M., Rockey, D. (1995) Lipid metabolism in Chlamydia trachomatis-infected cells: directed trafficking of Golgi-derived sphingolipids to the chlamydial inclusion . Proc Natl Acad Sci USA 92: 4877–4881.
  • Hackstadt, T., Rockey, D., Heinzen, R., Scidmore, M. (1996) Chlamydia trachomatis interrupts an exocytic pathway to acquire endogenously synthesized sphingomyelin in transit from the Golgi apparatus to the plasma membrane. EMBO J 15: 964–977.
  • Hackstadt, T., Fischer, E.R., Scidmore, M.A., Rockey, D.D., Heinzen, R.A. (1997) Origins and functions of the chlamydial inclusion. Trends Microbiol 5: 288–293.
  • Hanada, K., Nishijima, M., Akamatsu, Y. (1990) A temperature-sensitive mammalian cell mutant with thermolabile serine palmitoyltransferase for the sphingolipid biosynthesis. J Biol Chem 265: 22137–22142.
  • Hanada, K., Nishijina, M., Kiso, M., Hasegawa, A., Fujita, S., Ogawa, T., Akamatsu, Y. (1992) Sphingolipids are essential for the growth of Chinese hamster ovary cells. J Biol Chem 267: 23527–23533.
  • Hanada, K., Hara, T., Nishijima, M., Kuge, O., Dickson, R.C., Nagiec, M.M. (1997) A mammalian homolog of the yeast LCB1 encodes a component of serine palmitoyltransferase, the enzyme that catalyzes the first step in sphingolipid synthesis. J Biol Chem 272: 32108–32114.
  • Hatch, G.M. & McClarty, G. (1998) Phospholipid composition of purified Chlamydia trachomatis mimics that of the eukaryotic cell. Inf. Immun. 66: 3727 3735.
  • Van Helvoort, A., Smith, A.J., Sprong, H., Fritzsche, I., Schinkel, A.H.P. B. , Van Meer, G. (1996) MDR1 P-glycoprotein is a lipid translocase of broad specificity, while MDR3 P-glycoprotein specifically translocates phosphatidylcholine. Cell 87 : 507 517.
  • Merrill, A.H., Wang, E., Gilchrist, D.G., Riley, R.T. (1993) Fumonisins and other inhibitors of de novo sphingolipid biosynthesis. Adv Lipid Res 26: 215–234.
  • Moulder, J.W. (1962) The Biochemistry of Intracellular Parasitism. Moulder, J.W. (ed. ). Chicago: The University of Chicago Press, pp. 122–124.
  • Moulder, J.W. (1991) Interaction of chlamydiae and host cells in vitro. Microbiol Rev 55: 143–190.
  • Nakamura, K. & Handa, S. (1984) Coomassie brilliant blue staining of lipids on thin-layer plates. Anal Biochem 142: 406–410.
  • Newhall, W.J. (1988) Macromolecular and antigenic composition of chlamydiae. In Microbiology of Chlamydia. Barron, A.L. (ed.). Boca Raton, FL: CRC, pp. 48–70.
  • Van Ooij, C., Apodaca, G., Engel, J. (1997) Characterization of the Chlamydia trachomatis vacuole and its interaction with the host endocytic pathway in HeLa cells. Infect Immun 65: 758–766.
  • Van Ooij, C., Homola, E., Kincaid, E., Engel, J. (1998) Fusion of vacuoles containing Chlamydia trachomatis is inhibited at low temperature and requires bacterial protein synthesis. Infect Immun 66: 5364–5371.
  • Perara, E., Yen, T.S., Ganem, D. (1990) Growth of Chlamydia trachomatis in enucleated cells. Infect Immun 58: 3816–3818.
  • Raggers, R.J., Van Helvoort, A., Evers, R., Van Meer, G. (1999) The human multidrug resistance protein MRP1 translocates sphingolipid analogs across the plasma. J Cell Sci 112: 415–422.
  • Ridgway, N.D. (1995) Inhibition of acyl-CoA: cholesterol acyltransferase in chinese hamster ovary (CHO) cells by short-chain ceramide and dihydroceramide. Biochim Biophys Acta 1256: 39–46.
  • Rosenwald, A.G. & Pagano, R.E. (1993) Inhibition of glycoprotein traffic through the secretory pathway by ceramide. J Biol Chem 268: 4577–4579.
  • Schachter, J. & Dawson, C.R. (1990) The epidemiology of trachoma predicts more blindness in the future. Scand J Infect Dis 69: 55–62.
  • Schroeder, J.J., Crane, H.M., Xia, J., Liotta, D.C., Merrill, A.H.J. (1994) Disruption of sphingolipid metabolism and stimulation of DNA synthesis by fumonisin B1: a molecular mechanism for carcinogenesis associated with Fusarium moniliforme. J Biol Chem 269: 3475–3481.
  • Scidmore, M.A., Fischer, E.R., Hackstadt, T. (1996) Sphingolipids and glycoproteins are differentially trafficked to the Chlamydia trachomatis inclusion. J Cell Biol 134: 363–374.
  • Simons, K. & Ikonen, E. (1997) Functional rafts in cell membranes. Nature 387: 569–572.
  • Stephens, R.S., Kalman, S., Lammel, C., Fan, J., Marathe, R., Aravind, L., et al. (1998) Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis. Science 282: 754–759.
  • Tolan, D., Conway, A.M., Pyne, N.J., Pyne, S. (1997) Sphingosine prevents diacylglycerol signaling to mitogen-activated protein kinase in airway smooth muscle. Am J Physio 273 (3 Pt 1): C928–C936.
  • Wang, E., Norred, W.P., Bacon, C.W., Riley, R.T., Merril, A.H. (1991) Inhibition of sphingolipid biosynthesis by fumonisins: implications for diseases associated with Fusarium moniliforme. J Biol Chem 266: 14486–14490.
  • Yoo, H.-S., Norred, W.P., Wang, E., Merrill, A.H., Riley, R.T. (1992) Fumonisin inhibition of de novo sphingolipid biosynthesis and cytotoxicity are correlated in LLC-PK1 cells. Toxicol Appl Pharm 114: 9–15.
  • Zhang, J.P. & Stephens, R.S. (1992) Mechanism of Chlamydia trachomatis attachment to eukaryotic host cells. Cell 69: 861–869.