SEARCH

SEARCH BY CITATION

References

  • Arnold, T.E., Yu, J., and Belasco, J.G. (1998) mRNA stabilization by the ompA 5′ untranslated region: two protective elements hinder distinct pathways for mRNA degradation. RNA 4: 319330.
  • Bockmann, R., Dickneite, C., Goebel, W., and Bohne, J. (2000) PrfA mediates specific binding of RNA polymerase of Listeria monocytogenes to PrfA-dependent virulence gene promoters resulting in a transcriptionally active complex. Mol Microbiol 36: 487497.
  • Boujemaa-Paterski, R., Gouin, E., Hansen, G., Samarin, S., Le Clainche, C., Didry, D., et al. (2001) Listeria protein ActA mimics WASp family proteins: it activates filament barbed end branching by Arp2/3 complex. Biochemistry 40: 1139011404.
  • Bricker, A.L., and Belasco, J.G. (1999) Importance of a 5′ stem–loop for longevity of papA mRNA in Escherichia coli. J Bacteriol 181: 35873590.
  • Brundage, R.A., Smith, G.A., Camilli, A., Theriot, J.A., and Portnoy, D.A. (1993) Expression and phosphorylation of the Listeria monocytogenes ActA protein in mammalian cells. Proc Natl Acad Sci USA 90: 1189011894.
  • Bubert, A., Sokolovic, Z., Chun, S.K., Papatheodorou, L., Simm, A., and Goebel, W. (1999) Differential expression of Listeria monocytogenes virulence genes in mammalian host cells. Mol Gen Genet 261: 323336.
  • Cameron, L.A., Footer, M.J., Van Oudenaarden, A., and Theriot, J.A. (1999) Motility of ActA protein-coated microspheres driven by actin polymerization. Proc Natl Acad Sci USA 96: 49084913.
  • Camilli, A., Paynton, C.R., and Portnoy, D.A. (1989) Intracellular methicillin selection of Listeria monocytogenes mutants unable to replicate in a macrophage cell line. Proc Natl Acad Sci USA 86: 55225526.
  • Chakraborty, T., Ebel, F., Domann, E., Niebuhr, K., Gerstel, B., Pistor, S., et al. (1995) A focal adhesion factor directly linking intracellularly motile Listeria monocytogenes and Listeria ivanovii to the actin-based cytoskeleton of mammalian cells. EMBO J 14: 13141321.
  • Condon, C. (2003) RNA processing and degradation in Bacillus subtilis. Microbiol Mol Biol Rev 67: 157174.
  • Cossart, P. (1995) Actin-based bacterial motility. Curr Opin Cell Biol 7: 94101.
  • Cossart, P., and Kocks, C. (1994) The actin based motility of the facultative intracellular pathogen Listeria monocytogenes. Mol Microbiol 13: 395402.
  • Domann, E., Wehland, J., Rohde, M., Pistor, S., Hartl, M., Goebel, W., et al. (1992) A novel bacterial virulence gene in Listeria monocytogenes required for host cell microfilament interaction with homology to the proline-rich region of vinculin. EMBO J 11: 19811990.
  • Emory, S.A., Bouvet, P., and Belasco, J.G. (1992) A 5′-terminal stem-loop structure can stabilize mRNA in Escherichia coli. Genes Dev 6: 135148.
  • Freitag, N.E. (2000) Genetic tools for use with Listeria monocytogenes. In Gram-Positive Pathogens. Fischetti, V.A., Novick, R.P., Ferretti, J.J., Portnoy, D.A., AndRood, , J.I. (eds). Washington, DC: American Society for Microbiology Press, pp. 488498.
  • Freitag, N.E., and Jacobs, K.E. (1999) Examination of Listeria monocytogenes intracellular gene expression by using the green fluorescent protein of Aequorea victoria. Infect Immun 67: 18441852.
  • Gellin, B.G., and Broome, C.V. (1989) Listeriosis. J Am Med Assoc 261: 13131320.
  • Goldberg, M.B. (2001) Actin-based motility of intracellular microbial pathogens. Microbiol Mol Biol Rev 65: 595626.
  • Gray, M.L., and Killinger, A.H. (1966) Listeria monocytogenes and listeric infections. Bacteriol Rev 30: 309382.
  • Horton, R. (1993) In vitro recombination and mutagenesis of DNA. In PCR Protocols: Current Methods and Applications. White, B. (ed.). Totowa, NJ: Humana Press, pp. 251260.
  • Johansson, J., Mandin, P., Renzoni, A., Chiaruttini, C., Springer, M., and Cossart, P. (2002) An RNA thermosensor controls expression of virulence genes in Listeria monocytogenes. Cell 110: 551.
  • Kocks, C., Gouin, E., Tabouret, M., Berche, P., Ohayon, H., and Cossart, P. (1992) L. monocytogenes-induced actin assembly requires the actA gene product, a surface protein. Cell 68: 521531.
  • Kocks, C., Marchand, J.B., Gouin, E., D’Hauteville, H., Sansonetti, P.J., Carlier, M.F., and Cossart, P. (1995) The unrelated surface proteins ActA of Listeria monocytogenes and IcsA of Shigella flexneri are sufficient to confer actin-based motility on Listeria innocua and Escherichia coli respectively. Mol Microbiol 18: 413423.
  • Kreft, J., and Vazquez-Boland, J.A. (2001) Regulation of virulence genes in Listeria. Int J Med Microbiol 291: 145157.
  • Lai, E.C. (2003) RNA sensors and riboswitches: self-regulating messages. Curr Biol 13: R285R291.
  • Lauer, P., Theriot, J.A., Skoble, J., Welch, M.D., and Portnoy, D.A. (2001) Systematic mutational analysis of the amino-terminal domain of the Listeria monocytogenes ActA protein reveals novel functions in actin-based motility. Mol Microbiol 42: 11631177.
  • Loisel, T.P., Boujemaa, R., Pantaloni, D., and Carlier, M.F. (1999) Reconstitution of actin-based motility of Listeria and Shigella using pure proteins. Nature 401: 613616.
  • Lorber, B. (1997) Listeriosis. Clin Infect Dis 24: 19.
  • Magdalena, J., and Goldberg, M.B. (2002) Quantification of Shigella IcsA required for bacterial actin polymerization. Cell Motil Cytoskeleton 51: 187196.
  • Mandal, M., Boese, B., Barrick, J.E., Winkler, W.C., and Breaker, R.R. (2003) Riboswitches control fundamental biochemical pathways in Bacillus subtilis and other bacteria. Cell 113: 577586.
  • Marquis, H., Goldfine, H., and Portnoy, D.A. (1997) Proteolytic pathways of activation and degradation of a bacterial phospholipase C during intracellular infection by Listeria monocytogenes. J Cell Biol 137: 13811392.
  • Mathews, D.H., Sabina, J., Zuker, M., and Turner, D.H. (1999) Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J Mol Biol 288: 911940.
  • Moors, M.A., Levitt, B., Youngman, P., and Portnoy, D.A. (1999a) Expression of listeriolysin O and ActA by intracellular and extracellular Listeria monocytogenes. Infect Immun 67: 131139 .
  • Moors, M.A., Auerbuch, V., and Portnoy, D.A. (1999b) Stability of the Listeria monocytogenes ActA protein in mammalian cells is regulated by the N-end rule pathway. Cell Microbiol 1: 249257.
  • Mounier, J., Ryter, A., Coquis-Rondon, M., and Sansonetti, P.J. (1990) Intracellular and cell-to-cell spread of Listeria monocytogenes involves interaction with F-actin in the enterocyte-like cell line Caco-2. Infect Immun 58: 10481058.
  • Mourrain, P., Lasa, I., Gautreau, A., Gouin, E., Pugsley, A., and Cossart, P. (1997) ActA is a dimer. Proc Natl Acad Sci USA 94: 1003410039.
  • Niebuhr, K., Ebel, F., Frank, R., Reinhard, M., Domann, E., Carl, U.D., et al. (1997) A novel proline-rich motif present in ActA of Listeria monocytogenes and cytoskeletal proteins is the ligand for the EVH1 domain, a protein module present in the Ena/VASP family. EMBO J 16: 54335444.
  • Noireaux, V., Golsteyn, R.M., Friederich, E., Prost, J., Antony, C., Louvard, D., and Sykes, C. (2000) Growing an actin gel on spherical surfaces. Biophys J 78: 16431654.
  • Pistor, S., Grobe, L., Sechi, A.S., Domann, E., Gerstel, B., Machesky, L.M., et al. (2000) Mutations of arginine residues within the 146-KKRRK-150 motif of the ActA protein of Listeria monocytogenes abolish intracellular motility by interfering with the recruitment of the Arp2/3 complex. J Cell Sci 113: 32773287.
  • Portnoy, D.A., Jacks, P.S., and Hinrichs, D.J. (1988) Role of hemolysin for the intracellular growth of Listeria monocytogenes. J Exp Med 167: 14591471.
  • Ripio, M.T., Dominguez-Bernal, G., Suarez, M., Brehm, K., Berche, P., and Vazquez-Boland, J.A. (1996) Transcriptional activation of virulence genes in wild-type strains of Listeria monocytogenes in response to a change in the extracellular medium composition. Res Microbiol 147: 371384.
  • Sanger, J.M., Sanger, J.W., and Southwick, F.S. (1992) Host cell actin assembly is necessary and likely to provide the propulsive force for intracellular movement of Listeria monocytogenes. Infect Immun 60: 36093619.
  • Schlax, P.J., and Worhunsky, D.J. (2003) Translational repression mechanisms in prokaryotes. Mol Microbiol 48: 11571169.
  • Sechi, A.S., Wehland, J., and Small, J.V. (1997) The isolated comet tail pseudopodium of Listeria monocytogenes: a tail of two actin filament populations, long and axial and short and random. J Cell Biol 137: 155167.
  • Sheehan, B., Kocks, C., Dramsi, S., Gouin, E., Klarsfeld, A.D., Mengaud, J., and Cossart, P. (1994) Molecular and genetic determinants of the Listeria monocytogenes infectious process. Curr Topics Microbiol 192: 187216.
  • Shetron-Rama, L.M., Marquis, H., Bouwer, H.G., and Freitag, N.E. (2002) Intracellular induction of Listeria monocytogenes actA expression. Infect Immun 70: 10871096.
  • Shetron-Rama, L.M., Mueller, K., Bravo, J.M., Bouwer, H.G., Way, S.S., and Freitag, N.E. (2003) Isolation of Listeria monocytogenes mutants with high-level in vitro expression of host cytosol-induced gene products. Mol Microbiol 48: 15371551.
  • Skoble, J., Portnoy, D.A., and Welch, M.D. (2000) Three regions within ActA promote Arp2/3 complex-mediated actin nucleation and Listeria monocytogenes motility. J Cell Biol 150: 527538.
  • De Smit, M.H., and Van Duin, J. (1994) Control of translation by mRNA secondary structure in Escherichia coli. A quantitative analysis of literature data. J Mol Biol 244: 144150.
  • Smith, G.A., Portnoy, D.A., and Theriot, J.A. (1995) Asymmetric distribution of the Listeria monocytogenes ActA protein is required and sufficient to direct actin-based motility. Mol Microbiol 17: 945951.
  • Smith, G.A., Theriot, J.A., and Portnoy, D.A. (1996) The tandem repeat domain in the Listeria monocytogenes ActA protein controls the rate of actin-based motility, the percentage of moving bacteria, and the localization of vasodilator-stimulated phosphoprotein and profilin. J Cell Biol 135: 647660.
  • Smith, K., and Youngman, P. (1992) Use of a new integrational vector to investigate compartment-specific expression of the Bacillus subtilis spoIIM gene. Biochimie 74: 705711.
  • Suarez, M., Gonzalez-Zorn, B., Vega, Y., Chico-Calero, I., and Vazquez-Boland, J.A. (2001) A role for ActA in epithelial cell invasion by Listeria monocytogenes. Cell Microbiol 3: 853864.
  • Sun, A.N., Camilli, A., and Portnoy, D.A. (1990) Isolation of Listeria monocytogenes small-plaque mutants defective for intracellular growth and cell-to-cell spread. Infect Immun 58: 37703778.
  • Theriot, J.A., Mitchison, T.J., Tilney, L.G., and Portnoy, D.A. (1992) The rate of actin-based motility of intracellular Listeria monocytogenes equals the rate of actin polymerization. Nature 357: 257260.
  • Vazquez-Boland, J.A., Kuhn, M., Berche, P., Chakraborty, T., Dominguez-Bernal, G., Goebel, W., et al. (2001) Listeria pathogenesis and molecular virulence determinants. Clin Microbiol Rev 14: 584640.
  • Welch, M.D., Iwamatsu, A., and Mitchison, T.J. (1997) Actin polymerization is induced by Arp2/3 protein complex at the surface of Listeria monocytogenes. Nature 385: 265269.
  • Welch, M.D., Rosenblatt, J., Skoble, J., Portnoy, D.A., and Mitchison, T.J. (1998) Interaction of human Arp2/3 complex and the Listeria monocytogenes ActA protein in actin filament nucleation. Science 281: 105108.
  • Yamanaka, K., Mitta, M., and Inouye, M. (1999) Mutation analysis of the 5′ untranslated region of the cold shock cspA mRNA of Escherichia coli. J Bacteriol 181: 62846291.
  • Youngman, P. (1987) Plasmid vectors for recovering and exploiting Tn917 transpositions in Bacillus and other gram-positive bacteria. In Plasmids: a Practical Approach. Hardy, K. (ed.). Oxford: IRL Press, pp. 79103.
  • Zalevsky, J., Grigorova, I., and Mullins, R.D. (2001) Activation of the Arp2/3 complex by the Listeria Acta protein. ActA binds two actin monomers and three subunits of the Arp2/3 complex. J Biol Chem 276: 34683475.
  • Zuker, M. (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31: 110.
  • Zuker, M., Jaeger, J.A., and Turner, D.H. (1991) A comparison of optimal and suboptimal RNA secondary structures predicted by free energy minimization with structures determined by phylogenetic comparison. Nucleic Acids Res 19: 27072714.