Evolution of cerebral vesicles and their sensory organs in an ascidian larva

Authors


Paolo Burighel, Dipartimento di Biologia, Università di Padova, via U. Bassi 58/B, I-35121 Padova, Italy. E-mail: burighel@civ.bio.unipd.it

Abstract

Sorrentino M., Manni L., Lane N. J. and Burighel P. 2000. Evolution of cerebral vesicles and their sensory organs in an ascidian larva. —Acta Zoologica (Stockholm) 81: 243–258

The ascidian larval nervous system consists of the brain (comprising the visceral ganglion and the sensory vesicle), and, continuous with it, a caudal nerve cord. In most species two organs, a statocyst and an ocellus with ciliary photoreceptors, are contained in the sensory vesicle. A third presumptive sensory organ was sometimes found in an ‘auxiliary’ ganglionic vesicle. The development and morphology of the sensory and auxiliary ganglionic vesicles in Botryllus schlosseri and their associated organs was studied. The sensory vesicle contains a unique organ, the photolith, responding to both gravity and light. It consists of a unicellular statocyst, in the form of an expanded pigment cup receiving six photoreceptor cell extensions. Presumptive mechano-receptor cells (S1 cells), send ciliary and microvillar protrusions to contact the pigment cup. A second group of distinctive cells (S2), slightly dorsal to the S1 cells, have characteristic microvillar extensions, resembling photoreceptor. We concur with the idea that the photolith is new and derived from a primitive statocyst and the S2 cells are the remnant of a primitive ocellus. In the ganglionic vesicle some cells contain modified cilia and microvillar extensions, which resemble the photoreceptor endings of the photolith. Our results are discussed in the light of two possible scenarios regarding the evolution of the nervous system of protochordates.

Ancillary