SEARCH

SEARCH BY CITATION

REFERENCES

  • 1
    Ooms EC, Anderson WA, Alons CL, Boon ME, Veldhuizen RW. Analysis of the performance of pathologists in the grading of bladder tumors. Hum Pathol 1983; 14: 1403
  • 2
    Tosoni I, Wagner U, Sauter G et al. Clinical significance of interobserver differences in the staging and grading of superficial bladder cancer. BJU Int 2000; 85: 4853
  • 3
    Anidjar M, Cussenot O, Blais J et al. Argon laser induced autofluorescence may distinguish between normal and tumor human urothelial cells: a microspectrofluorimetric study. J Urol 1996; 155: 17714
  • 4
    Baert L, Berg R, Van Damme B et al. Clinical fluorescence diagnosis of human bladder carcinoma following low-dose Photofrin injection. Urology 1993; 41: 32230
  • 5
    D’Hallewin M, Baert L, Vanherzeele H. Fluorescence imaging in bladder cancer. Acta Urol Belg 1994; 62: 49
  • 6
    Koenig F, McGovern FJ, Althausen AF, Deutsch TF, Schomacker KT. Laser induced autofluorescence diagnosis of bladder cancer. J Urol 1996; 156: 1597601
  • 7
    Koenig F, McGovern FJ, Enquist H, Larne R, Deutsch TF, Schomacker KT. Autofluorescence guided biopsy for the early diagnosis of bladder carcinoma. J Urol 1998; 159: 18715
  • 8
    Peng Q, Berg K, Moan J, Kongshaug M, Nesland JM. 5-aminolevulinic acid-based photodynamic therapy – principles and experimental research. Photochem Photobiol 1997; 65: 23551
  • 9
    Battle AMDC. Phorphyrins, porphyrias, cancer and photodynamic therapy: a model of carcinogenesis. Photochem Photobiol 1993; B20: 522
  • 10
    Abels C, Fritsch C, Bolsen K et al. Photodynamic therapy with 5-aminolevulinic acid-induced porphyrins of an amelanotic melanoma in vivo. Photochem Photobiol 1997; B40: 7683
  • 11
    Arendt JT, Levin HS, Klein EA, Cothren RM, Feld MS. Detection of papillary tumors of the urinary bladder using fluorescence spectroscopy. Lasers Life Sci 2000; 9: 181201
  • 12
    Kriegmair M, Baumgartner R, Knuchel R, Stepp H, Hofstadter F, Hofstetter A. Detection of early bladder cancer by 5-aminolevulinic acid induced porphyrin fluorescence. J Urol 1996; 155: 1059
  • 13
    Kriegmair M, Baumgartner R, Knuechel R et al. Fluorescence photodetection of neoplastic urothelial lesions following intravesical instillation of 5-aminolevulinic acid. Urology 1994; 44: 83641
  • 14
    Marcus SL, Sobel RS, Golub AL, Carroll RL, Lundahl S, Shulman DG. Photodynamic therapy (PDT) and photodiagnosis (PD) using endogenous photosensitization induced by 5-aminolevulinic (ALA): current clinical and developmental status. J Clin Laser Med Surg 1996; 14: 5966
  • 15
    Jichlinski P, Wagnieres G, Forrer M et al. Clinical assessment of fluorescence cystoscopy during transurethral bladder resection in superficial bladder cancer. Urol Res 1997; 25 (Suppl. 1): S36
  • 16
    Kriegmair M, Stepp H, Steinbach P et al. Fluorescence cystoscopy following intravesical instillation of 5-aminolevulinic acid: a new procedure with high sensitivity for detection of hardly visible urothelial neoplasias. Urol Int 1995; 55: 1906
  • 17
    Kriegmair M, Baumgartner R, Lumper W, Waidelich R, Hofstetter A. Early clinical experience with 5-aminolaevulinic acid for the photodynamic therapy of superficial bladder cancer. Br J Urol 1996; 77: 66771
  • 18
    Zaak D, Kriegmair M, Stepp H et al. Endoscopic detection of transitional cell carcinomas with 5-aminolevulinic acid -results of 1012 fluorescent endoscopies. Urology 2001; 57: 6904
  • 19
    Steinbach P, Weingandt H, Baumgartner R et al. Cellular fluorescence of the systemic photosensitizer protoporphyrin IX following exposure to 5-aminolevulinic acid. Photochem Photobiol 1995; 62: 8879
  • 20
    Stepp H, Wagner M, Zaak D, Knuchel-clarke R. Fluorescence diagnosis of bladder tumours using 5-ALA – fundamentals and results. Munich; 1999
  • 21
    Riedl C, Daniltchenko D, Koenig F, Simak R, Loening S, Pfluger H. Fluorescence endoscopy with 5-aminolevulinic acid reduces early recurrence rate in superficial bladder cancer. J Urol 2001; 165: 11213
  • 22
    Lange N, Jichlinski P, Zellweger M et al. Photodetection of early human bladder cancer based on the fluorescence of 5-aminolaevulinic acid hexylester-induced protoporphyrin IX. a pilot study. Br J Cancer 1999; 80: 18593
  • 23
    Jichlinski P, Marti A, Ayman D et al. First experience of hexyl-ester aminolevulinic acid induced fluorescence cystoscopy in patients with superficial bladder cancer. J Urol 2002; 16 (Suppl.): 160
  • 24
    D’Hallewin M, Kamuhabwa A, Roskams T, DeWitte P, Baert L. Hypericin-based fluorescence diagnosis of bladder carcinoma. BJU Int 2002; 89: 7603
  • 25
    Mourant JR, Bigio IJ, Boyer J, Conn RL, Johnson T, Shimada T. Spectroscopic diagnosis of bladder cancer with elastic light scattering. Lasers Surg Med 1995; 17: 3507
  • 26
    Mourant JR, Bigio IJ, Boyer J et al. Elastic scattering spectroscopy as a diagnostic tool for differentiating pathologies in the gastrointestinal tract: preliminary testing. J Biomed Opt 1996; 1: 1929
  • 27
    Feld MS, Manoharan R, Salenius J et al. detection and characterization of human tissue lesions with near infra-red Raman spectroscopy. Adv Fluorescence Sensing Technol 1995; II: (SPIE 2388): 99102
  • 28
    Stone N, Kendall C, Shepherd N, Crow P, Barr H. Near infra red spectroscopy for classification of epithelial precancers and cancers. J Raman Spectroscopy 2002; 33: 56473
  • 29
    Crow P, Kendall C, Ritchie A, Wright M, Stone N. Evaluation of Raman spectroscopy to provide a real time, optical method for discrimination between normal and abnormal tissue in the prostate. Eur Urol 2002; 1 (Suppl. 1): 80
  • 30
    Crow P, Stone N, Kendall CA et al. The use of Raman spectroscopy to identify and grade prostatic adenocarcinoma in vitro. Br J Cancer 2003; 89: 1068
  • 31
    Tearney GJ, Brezinski ME, Southern JF, Bouma BE, Boppart SA, Fujimoto JG. Optical biopsy in human urologic tissue using optical coherence tomography. J Urol 1997; 157: 19159