SEARCH

SEARCH BY CITATION

Keywords:

  • Climate-induced disturbance;
  • El Niño–Southern Oscillation;
  • fire synchrony;
  • Northern Patagonia;
  • south-western United States;
  • tree-ring reconstructions

Abstract

Fire histories were compared between the south-western United States and northern Patagonia, Argentina using both documentary records (1914–87 and 1938–96, respectively) and tree-ring reconstructions over the past several centuries. The two regions share similar fire–climate relationships and similar relationships of climatic anomalies to the El Niño–Southern Oscillation (ENSO). In both regions, El Niño events coincide with above-average cool season precipitation and increased moisture availability to plants during the growing season. Conversely, La Niña events correspond with drought conditions. Monthly patterns of ENSO indicators (southern oscillation indices and tropical Pacific sea surface temperatures) preceding years of exceptionally widespread fires are highly similar in both regions during the 20th century. Major fire years tend to follow the switching from El Niño to La Niña conditions. El Niño conditions enhance the production of fine fuels, which when desiccated by La Niña conditions create conditions for widespread wildfires. Decadal-scale patterns of fire occurrence since the mid-17th century are highly similar in both regions. A period of decreased fire occurrence in both regions from c. 1780–1830 coincides with decreased amplitude and/or frequency of ENSO events. The interhemispheric synchrony of fire regimes in these two distant regions is tentatively interpreted to be a response to decadal-scale changes in ENSO activity. The ENSO–fire relationships of the south-western USA and northern Patagonia document the importance of high-frequency climatic variation to fire hazard. Thus, in addition to long-term trends in mean climatic conditions, multi-decadal scale changes in year-to-year variability need to be considered in assessments of the potential influence of climatic change on fire regimes.