SEARCH

SEARCH BY CITATION

References

  • 1
    Odland, G.F. Structure of the skin. In Biochemistry and physiology of the skin Vol. 1 (L. A. Goldsmith, ed), pp. 3 63. Oxford University Press, Oxford (1991).
  • 2
    Winsor, T. & Burch, G.E. Differential roles of layers of human epigastric skin on diffusion of water. Arch. Intern. Med. 74, 428 444 (1944).
  • 3
    Matolsky, A.G, Downes, A.M., Sweeney, T.M. A study of the cornified epithelium of human skin. J. Invest Dermatol. 50, 19 26 (1968).
  • 4
    Elias, P.M. Epidermal lipids, barrier function and desquamation. J. Invest. Dermatol. 80(Suppl.), 44 49 (1983).
  • 5
    Rice, R.H. & Green, H. Cornified envelope of terminally differentiated human epidermal keratinocytes consists of cross-linked proteins. Cell 11, 417 422 (1977).
  • 6
    Tabachnick, J. & Labadie, J.H. Studies on the biochemistry of epidermis, IV – The free amino acids, ammonia, urea and pyrrolidone carboxylic acid content of conventional and germ free albino guinea pig epidermis. J. Invest. Dermatol. 54, 24 31 (1970).
  • 7
    Swartzendruber, D.C, Wertz, P.W, Kitko, D.J, Madison, K.C., Downing, D.T. Evidence that the corneocyte has a chemically-bound lipid envelope. J. Invest. Dermatol. 88, 181 193 (1987).
  • 8
    Wertz, P.W., Madison, K.C., Downing, D.T. Covalently bound lipids of human stratum corneum. J. Invest. Dermatol. 92, 109 111 (1989).
  • 9
    Chapman, S. & Walsh, A. Desmosomes, corneosomes and desquamation. An ultrastructural study of adult pig epidermis. Arch. Dermatol. Res. 282, 304 310 (1990).
  • 10
    Skerrow, C.J., Clelland, D.G., Skerow, D. Changes to desmosomal antigens and lectin-binding sires during differentiation in normal epidermis: a quantitative ultrastructural study. J. Cell Sci. 92, 667 677 (1989).
  • 11
    Scott, I.R., Harding, C.R., Barrett, J.G. Histidine-rich proteins of the keratohyalin granules: source of the free amino acids, urocanic acid and pyrrolidone carboxylic acid in the stratum corneum. Biochim. Biophys. Acta. 719, 110 117 (1982).
  • 12
    Blank, I.H. Factors which influence the water content of the stratum corneum. J. Invest. Dermatol. 18, 433 440 (1952).
  • 13
    King, I.A., O’Brien, T.J, Buxton, R.S. Expression of the skin type desmosomal cadherin Dsc1 is closely linked to the keratinisation of epithelial tissues during mouse development. J. Invest. Dermatol. 107, 531 538 (1996).
  • 14
    King, I.A., Angst, B.D., Hunt, D.M., Kruger, M., Arnemann, J., Buxton, R.S. Hierarchical expression of desmosomal cadherins during stratified epithelial morphogenesis in the mouse. Differentiation 62, 83 96 (1997).
  • 15
    Serre, G., Mils, V., Haftek, M., et al.Identification of late differentiation antigens of human cornified epithelia, expressed in re-organised desmosomes and bound to cross-linked envelopes. J. Invest. Dermatol. 97, 1061 1072 (1991).
  • 16
    Montezin, M., Simon, M., Guerrin, M, Serre, G. Corneodesmosin, a corneodesmosome-specific basic protein, is expressed in the cornified epithelia of the pig, guinea pig rat and mouse. Exp. Cell Res. 231, 132 140 (1997).
  • 17
    Zhou, Y. & Chaplin, D.D. Identification in the HLA class 1 region of a gene expressed late in keratinocyte differentiation. Proc. Natl. Acad. Sci. 90, 9470 9474 (1993).
  • 18
    Lundstrom, A., Serre, G., Haktek, M., Egelrud, T. Evidence for a role of corneodesmosin, a protein which may serve to modify desmosomes during cornification, in stratum corneum cell cohesion and desquamation. Arch. Dermatol. Res. 286, 369 375 (1994).
  • 19
    Simon, M., Montezin, M., Guerrin, M., Durieux, J.J., Serre, G. Characterisation and purification of human corneodesmosin, an epidermal basic glycoprotein associated with corneocyte-specific modified desmosomes. J. Biol. Chem. 272, 31770 31776 (1997).
  • 20
    Fartasch, M., Bassukas, I.D., Diepgen, T.L. Structural relationship between epidermal lipid lamellae, lamellar bodies and desmosomes in human epidermis, an ultrastructural study. Br. J. Dermatol. 128, 1 9 (1993).
  • 21
    Rawlings, A.V., Watkinson, A.W, Rogers, J., Mayo, A.M., Hope, J., Scott, I.R. Abnormalities in stratum corneum structure, lipid composition and desmosomal degradation in soap-induced winter xerosis. J. Soc. Cosmet. Chem. 45, 203 220 (1994).
  • 22
    Brysk, M.M. & Miller, J. Concanavalin-A binding glycoprotein in human stratum corneum. J. Invest. Dermatol. 82, 280 284 (1984).
  • 23
    Brysk, M.M., Bell, T., Rajaraman, S. Sensitivity of desquamin to proteolytic degradation. Pathobiology 59, 109 112 (1991).
  • 24
    Brysk, M.M., Bell, T., Brysk, H., Selvanayagam, P., Rajaraman, S. Enzymatic-activity of desquamin. Exp. Cell Res. 214, 22 26 (1994).
  • 25
    Selvanayagam, P., Lei, G., Ram, S., et al.Desquamin is an epidermal ribonuclease. J. Cell Biol. 68, 74 82 (1998).
  • 26
    Smith, W.P., Christensen, M.S., Nacht, S., Gans, E.H. Effect of lipids on the aggregation and permeability of human stratum corneum. J. Invest. Dermatol. 78, 7 11 (1982).
  • 27
    Chapman, S.J., Walsh, A., Jackson, S.M., Friedmann, P.M. Lipids, proteins and corneocyte adhesion. Arch. Dermatol. Res. 283, 1729 1732 (1991).
  • 28
    Abraham, W. & Downing, D.T. Interaction between corneocytes and stratum corneum lipid liposomes in vitro. Biochim. Biophys. Acta 1021, 119 125 (1990).
  • 29
    Ranasinghe, A.W., Wertz, P.W., Downing, D.T., McKenzie, I. Lipid composition of cohesive and desquamated corneocytes from mouse ear. J. Invest. Dermatol. 94, 216 220 (1985).
  • 30
    Bointe, F., Saunois, A., Pinguet, P., Meybeck, A. Existence of a lipid gradient in the upper stratum corneum and its possible significance. Arch. Dermatol. Res. 289, 78 82 (1997).
  • 31
    Elias, P.M. & Menon, G.K. Structural and lipid biochemical correlates of the epidermal permeability barrier. In Advances in lipid research Vol. 24 (P. M. Elias, ed), pp. 1 26. Academic Press, London (1991).
  • 32
    Azimi, N.A., Spencer, I.S., Potts, R.O, Lyttle, F.E., Chen, D.A. Fluorescence spectroscopic evaluation of the fluidity gradient in stratum corneum lipids. J. Invest. Dermatol. 98, 641 (1992).
  • 33
    Wertz, P.M. & Downing, D.T. Ceramidase activity in porcine epidermis. Febs Lett. 268, 110 112 (1990).
  • 34
    Oldroyd, J., Critchley, P., Tiddy, G, Rawlings, A.V. Specialised role for ceramide one in the stratum corneum water barrier. J. Invest. Dermatol. 102, 525 (1994).
  • 35
    Bointe, F., Saunois, A., Pinguet, P., et al.Thermotrophic phase behaviour of in vivo extracted human stratum corneum lipids. Lipids 32, 653 660 (1997).
  • 36
    Barton, S.P, King, C.S., Marks, R., Nicholls, S. Technique for studying the structural detail of isolated human corneocytes. Br. J. Dermatol. 102, 63 73 (1980).
  • 37
    Long, S., Banks, J., Watkinson, A., Harding, C.R., Rawlings, A.V. Desmocollin 1: a key marker for desmosome processing in the stratum corneum. J. Invest. Dermatol. 106, 397 (1996).
  • 38
    Menon, G.K., Ghadially, R., Williams, M.L., Elias, P.M. Lamellar bodies as delivery systems of hydrolytic enzymes: implications for normal and abnormal desquamation. Br. J. Dermatol. 126, 337 345 (1992).
  • 39
    Egelrud, T. Purification and preliminary characterisation of stratum corneum chymotryptic enzyme – a proteinase that may be involved in desquamation. J. Invest. Dermatol. 101, 200 204 (1993).
  • 40
    Sondell, B., Thornell, L.E., Stigbrand, T., Egelrud, T. Immunolocalisation of stratum-corneum chymotryptic enzyme in human skin and oral epithelium with monoclonal antibodies – Evidence of a proteinase specifically expressed in keratinising squamous epithelia. J. Histochem. Cytochem. 42, 459 (1994).
  • 41
    Rogers, J.S., Watkinson, A., Harding, C.R. Characterisation of the effects of protease inhibitors and lipids on human stratum corneum chymotrytic-like enzyme supports a role in desquamation. J. Invest Dermatol. 110, 672 (1998).
  • 42
    Lundstrom, A. & Egelrud, T. Evidence that cell shedding from plantar stratum corneum in vitro involves endogenous proteolysis of the desmosomal protein desmoglein-1. J. Invest. Dermatol. 94, 216 220 (1990).
  • 43
    Sondell, B., Thornell, L.E., Egelrud, T. Evidence that stratum corneum chymotryptic enzyme is transported to the stratum corneum extracellular space via lamellar bodies. J. Invest. Dermatol. 104, 891 823 (1995).
  • 44
    Nylander Lundqvist, E. & Egelrud, T. Formation of active IL-1 beta from pro-IL-1beta catalysed by stratum corneum chymotryptic enzyme in vitro. Acta-Dermato-Venereo. 77, 203 206 (1997).
  • 45
    Suzuki, Y., Nonura, J., Hori, J, Koyama, J., Takahashi, M., Horii, I. Detection and characterisation of endogenous proteases associated with desquamation of stratum corneum. Arch. Dermatol. Res. 285, 327 337 (1993).
  • 46
    Sato, J., Nakanishi, J., Denda, M., Nomura, J., Koyama, J. Cholesterol sulphate inhibits proteases which are involved in desquamation of stratum corneum. J. Invest. Dermatol. 108, 396 (1997).
  • 47
    Franzke, C.W., Wiedow, O, Christophers, E. Detection of trypsin-like activity in human stratum corneum. J. Invest. Dermatol. 109, 431 (1997).
  • 48
    Hansson, L., Stromqvist, M., Backman, A., Egelrud, T. Cloning, expression and characterisation of stratum corneum chymotrypic enzyme-a skin-specific human serine protease. J. Biol. Chem. 269, 19420 19426 (1994).
  • 49
    Walsh, A. & Chapman, S. Sugars protect desmosomal proteins from proteolysis. Br. J. Dermatol. 122, 289 (1990).
  • 50
    Franzke, C.W., Baici, A., Bartels, J, Christophers, E., Wiedow, O. Antileukoprotease inhibits stratum corneum chymotryptic enzyme – Evidence for a regulatory function in desquamation. J. Biol. Chem. 271, 21886 21890 (1996).
  • 51
    Rawlings, A.V, Harding, C.R, Watkinson, A., Banks, J., Ackerman, C, Sabin, R. The effect of glycerol and humidity on desmosome degradation in stratum corneum. Arch. Dermatol. Res. 287, 457 464 (1995).
  • 52
    Bartolone, J., Doughty, D., Egelrud, T. A non-invasive approach for assessing corneocyte cohesion: immunocytochemical detection of Dsg1. J. Invest. Dermatol. 96, 596 (1991).
  • 53
    Bernard, D., Camus, C, Nguyen, Q.L., Serre, G. Proteolysis of corneodesmosomal proteins in winter xerosis. J. Invest. Dermatol. 105, 176 (1995).
  • 54
    Lee, S.H., Elias, P.M., Proksch, E., Feingold, K.M. Calcium and potassium are important regulators of barrier homeostasis. J. Clin. Invest. 89, 530 538 (1992).
  • 55
    Feingold, K.R. The regulation and role of epidermal lipid synthesis. In: Advances in lipid research Vol. 24 (P. M. Elias, ed), pp. 57 82. Academic Press, London (1991).
  • 56
    Holleran, W.M., Man, M.Q, Wen, N.G., Menon, G.K., Elias, P.M., Feingold, K.R. Sphingolipids are required for mammalian epidermal barrier function-inhibition of sphingolipid synthesis delays barrier recovery after acute perturbation. J. Clin. Invest. 88, 1338 1345 (1991).
  • 57
    Harris, I.R., Farrell, A.M., Holleran, W.M. et al. Parallel regulation of sterol regulatory element binding protein-2 and the enzymes of cholesterol and fatty acid synthesis in cultured human keratinocytes and murine epidermis. J. Lipid Res. 39, 412 422 (1997).
  • 58
    Wertz, P.W., Miethke, M.C., Long, S.A., Strauss, J.S., Downing, D.T. Composition of ceramides from human stratum corneum and comedones. J. Invest. Dermatol. 84, 410 412 (1985).
  • 59
    Swartzendruber, D.C, Wertz, P.W., Kitco, D.J., Madison, K.C., Downing, D.T. Molecular models of intercellular lamellae in mammalian stratum corneum. J. Invest. Dermatol. 92, 215 257 (1991).
  • 60
    Rawlings, A., Critchley, P., Ackerman, C., Scott, I.R. The functional roles of ceramide one. Proceedings of the 17th IFSCC, International Federation Society Cosmetic Chemists. Int. Cong. 1, 14 19 (1992).
  • 61
    Bouwstra, J.A., Gooris, G.S., Dubbelaar, F.E.R., Weerheim, A.M., Iljerman, A.P., Ponec, M. Article title. J. Lipid Res. 39, 186 196 (1998).
  • 62
    Wertz, P.W., Madison, K.C., Downing, D.T. Covalently bound lipids of human stratum corneum. J. Invest. Dermatol. 92, 109 111 (1989).
  • 63
    Robson, K.J., Stewart, M.E., Michelsen, S., Lazo, N.D., Downing, D.T. 6-Hydroxy-4-sphingenine in human epidermal ceramides. J. Lipid Res. 35, 2060 2068 (1994).
  • 64
    Jokura, Y., Ishikawa, S., Tokuda, H, Imokawa, G. Molecular analysis of elastic properties of the stratum corneum by solid-state C-13 – nuclear magnetic resonance spectroscopy. J. Invest. Dermatol. 104, 806 812 (1995).
  • 65
    Barrett, J.G. & Scott, I.R. Pyrrolidone carboxylic acid synthesis in guinea pig epidermis. J. Invest. Dermatol. 81, 122 124 (1983).
  • 66
    Scott, I.R. & Harding, C.R. Studies on the synthesis and degradation of a histidine-rich phosphoprotein from mammalian epidermis. Biochim. Biophys. Acta. 669, 65 78 (1981).
  • 67
    Scott, I.R., Harding, C.R., Barrett, J.G. Histidine rich proteins of the keratohyalin granules: Source of the free amino acids, urocanic acid and pyrrolidone carboxylic acid in the stratum corneum. Biochim. Biophys. Acta. 719, 110 117 (1982).
  • 68
    Ishidayamamoto, A., Hohl, D., Roop, D.R., Iizuka, H., Eady, R.A.J. Loricrin immunoreactivity in human skin – Localisation of specific granules (L-granules) in acrosyringia. Arch. Dermatol. Res. 285, 491 498 (1993).
  • 69
    Harding, C.R. & Scott, I.R. Histidine-rich proteins (filaggrins). Structural and functional heterogeneity during epidermal differentiation. J. Mol. Biol. 170, 651 673 (1983).
  • 70
    Steinert, P.M., Cantieri, J.S., Teller, J.D., Lonsdale-Eccles, J.D., Dale, B.A. Characterisation of a class of cationic proteins that specifically interact with intermediate filaments. Proc. Natl. Acad. Sci. USA 78, 4097 4101 (1981).
  • 71
    Gan, S.-Q., McBride, O.W., Idler, W.W., Marakova, N, Steinert, P.M. Organisation, structure and polymorphism of the human profilaggrin gene. Biochemistry 29, 9432 9440 (1990).
  • 72
    Presland, R.B., Haydock, P.V., Fleckman, P., Nirunsuksiri, W, Dale, B.A. Characterisation of the human profilaggrin gene. Genomic organisation and identification of an S-100 calcium binding domain at the amino terminus. J. Biol. Chem. 267, 23772 23781 (1992).
  • 73
    Presland, R.B., Bassuk, J.A, Kimball, J.R., Dale, B.A. Characterisation of two distinct calcium-binding sites in the amino terminus of of human profilaggrin. J. Invest. Dermatol. 104, 218 223 (1995).
  • 74
    Dale, B.A., Preland, R.B., Lewis, S.P., Underwood, R.A., Fleckman, P. Transient expression of epidermal filaggrin in cultured cells causes collapse of intermediate filament networks with alteration of cell shape and nuclear integrity. J. Invest. Dermatol. 108, 179 187 (1997).
  • 75
    Scott, I.R. & Harding, C.R. Profilaggrin phosphatase activity – A key control step in the pathway of epithelial differentiation. J. Invest. Dermatol. 96, 1006 (1993).
  • 76
    Kam, E, Resing, K.A., Lim, S.K., Dale, B.A. Identification of rat epidermal profilaggrin phosphatase as a member of the protein phosphatase-2A family. J. Cell Sci. 106, 219 226 (1993).
  • 77
    Presland, R.B., Kimball, J.R., Kautsky, M.B., Lewis, S.P., Lo, C.Y., Dale, B.A. Evidence for specific proteolytic cleavage of the N-terminal domain of human profilaggrin during epidermal differentiation. J. Invest. Dermatol. 108, 170 178 (1997).
  • 78
    Yamazaki, M., Ishidoh, K., Suga, Y. et al. Cytoplasmic processing of human profilaggrin by active mu-calpain. Biochim. Biophys. Res. Comm. 235, 652 656 (1997).
  • 79
    Resing, K.A., Thulin, C., Whiting, K., Alalawi, M., Mostad, S. Characterisation of profilaggrin endoproteinase-1: a regulated cytoplasmic endoproteinase of epidermis. J. Biol. Chem. 270, 28193 28198 (1997).
  • 80
    Richards, S., Scott, I.R., Harding, C.R., Liddell, E., Curtis, G.C. Evidence for filaggrin as a component of the cell envelope of the newborn rat. Biochem. J. 253, 153 160 (1988).
  • 81
    Steinert, P.M. & Marekov, L.N. The proteins elafin, filaggrin, keratin intermediate filaments, loricrin, and small proline-rich proteins are isodipeptide cross-linked components of the human cornified cell-envelope. J. Biol. Chem. 270, 17702 17711 (1995).
  • 82
    Scott, I.R. Alterations in the metabolism of filaggrin in the skin after chemical and ultraviolet induced erythema. J. Invest. Dermatol. 87, 460 465 (1986).
  • 83
    Steinert, P.M. Epidermal keratin: filaments and matrix. In: Stratum corneum (R. Marks and G. Plewig, eds), pp. 25 38. Springer-Verlag, Berlin (1983).
  • 84
    Kan, S.H., Asaga, H., Senshu, T. Detection of several families of deiminated proteins derived from filaggrin and keratins in guinea pig skin. Zool. Sci. 13, 673 678 (1996).
  • 85
    Senshu, T., Kan, S.H, Ogawa, H., Manabe, M., Asaga, H. Preferential deimination of keratin K1 and filaggrin during the terminal differentiation of human epidermis. Biochem. Biophys. Res. Comm. 225, 712 719 (1996).
  • 86
    Kawada, A., Hara, K., Morimoto, K. , Hiruma, M., Ishibasha, A. Rat epidermal cathepsin-B – Purification and characterisation of proteolytic properties towards filaggrin and synthetic substrates. Int. J. Biochem. Cell Biol. 27, 175 183 (1995).
  • 87
    Kawada, A., Hara, K., Hiruma, M., Noguchi, H., Ishibashi, A. Rat epidermal cathepsin L-like proteinase – Purifiction and some hydrolytic properties towards filaggrin and synthetic substrates. J. Biol. Chem. 118, 332 337 (1995).
  • 88
    Laden, K. & Spitzer, R. Identification of a natural moisturising agent in skin. J. Soc. Cosmet. Chem. 18, 351 360 (1976).
  • 89
    Angelin, J.H. Urocanic acid a natural sunscreen. Cosmetics Toiletries 91, 47 49 (1976).
  • 90
    Scott, I.R. Factors controlling the expressed activity of histidine ammonia lyase in the epidermis and the resulting accumulation of urocanic acid. Biochem. J. 194, 829 838 (1981).
  • 91
    Scott, I.R. & Harding, C.R. Filaggrin breakdown to water binding components during development of the rat stratum corneum is controlled by the water activity of the environment. Dev. Biol. 115, 84 92 (1986).
  • 92
    Scott, I.R. & Harding, C.R. Physiological effects of occlusion-filaggrin retention. Proc. Dermatol. 2000, 773 (1993).
  • 93
    Harding, C.R., Ellis, K., Scott, I.R. Alterations in the processsing of human filaggrin following skin occlusion in vitro and in vivo. J. Invest. Dermatol. 100, 579 000 (1993).
  • 94
    Haftek, M., Simon, M., Kanitakis, J, et al.Expression of corneodesmosin in the granular layer and stratum corneum of normal and diseased skin. Br. J. Dermatol. 137, 864 873 (1998).
  • 95
    Suzuki, Y., Koyama, J, Moro, O., Kikuchi, K., Tanida, M., Tagami, H. The role of two endogenous proteases of the stratum corneum in degradation of desmoglein-1 and their reduced activity in the skin of ichthyotic patients. Br. J. Dermatol. 134, 460 464 (1996).
  • 96
    Fartasch, M., Bassukas, I.D., Diepgen, T.L Disturbed extruding mechanism of lamellar bodies in dry non-eczematous skin of atopics. Br. J. Dermatol. 127, 221 227 (1992).
  • 97
    Mao-Qiang, M., Jain, M., Feingold, K.R., Elias, P.M. Secretory phospholipase A2 activity is required for permeability barrier homeostasis. J. Invest. Dermatol. 106, 57 63 (1996).
  • 98
    Menon, G.K., Grayson, S., Elias, P.M. Cytochemical and biochemical localisation of lipase and sphingomyelinase activity in mammalian epidermis. J. Invest. Dermatol. 86, 591 597 (1986).
  • 99
    Holleran, W.M., Takagi, Y., Menon, G.K., Legler, G., Feingold, K.R., Elias, P.M. Processing of epidermal glucosylceramides is required for optimal mammalian permeability barrier function. J. Clin. Invest. 91, 1656 1664 (1993).
  • 100
    Jin, K., Higaki, Y., Higuchi, K., Yada, Y., Kawashima, M., Imokawa, G. Analysis of beta glucocerebrosidase and ceramidase activities in atopic and aged dry skin. Acta Derm. Venereo 74, 337 340 (1994).
  • 101
    Williams, M.L. Lipids in normal and pathological desquamation. In Advances in lipid research Vol. 24 (P. M. Elias, ed), pp. 211 262. Academic Press, London (1991).
  • 102
    Sato, J, Nakanishi, J., Denda, M., Nomura, J., Koyama, J. Cholesterol sulphate inhibits proteases which are involved in desquamation of stratum corneum. J. Invest. Dermatol. 108, 396 (1997).
  • 103
    Saint-Leger, D., Francois, A.M., Leveque, J.L., Stoudemayer, T., Kligman, A.M., Grove, G.L. Stratum corneum lipids in winter xerosis. Dermatologica 178, 151 155 (1989).
  • 104
    Nappe, C., Delesalle, G., Jansen, A, De Rigal, J., Camus, C. Decrease in ceramide II in skin xerosis. J. Invest. Dermatol. 100, 530 (1993).
  • 105
    Fulmer, A.W. & Kramer, G.J. Stratum corneum abnormalities in surfactant induced dry scaly skin. J. Invest. Dermatol. 80, 598 602 (1989).
  • 106
    Lampe, M.A., Burlingame, A.L, Whitney, J, et al.Human stratum corneum lipids: characterisation and regional variation. J. Lipid Res. 24, 120 130 (1983).
  • 107
    Imokawa, G, Akasaki, S., Hattori, M., Yoshizuka, N. Selective recovery of deranged water-holding properties by stratum corneum lipids. J. Invest. Dermatol. 87, 758 761 (1986).
  • 108
    Imokawa, G., Akasaki, S., Minematsu, Y, Kawai, M. Importance of intercellular lipids in water retention properties of the stratum corneum: induction and recovery study of surfactant dry skin. Arch. Dermatol. Res. 281, 45 51 (1989).
  • 109
    Rawlings, A.V., Harding, C.R., Schilling, K.S. Ceramides and the skin. In: Textbook of cosmetic dermatology (R. Baran and H. Maibach, eds), pp. 99 112. Martin Dunitz Ltd, London (1998).
  • 110
    Seguchi, T., Chang, Y.C., Kusuda, S., Takahashi, M., Aisuy, K., Tezuka, T. Decreased expression of filaggrin in atopic skin. Arch. Derm Res. 288, 442 446 (1996).
  • 111
    Marstein, S., Jellum, E., Eldjarn, L. The concentration of pyrroglutamic acid (2-pyrrolidone-5-carboxylic acid) in normal and psoriatic epidermis determined on a microgram scale by gas chromatography. Clin. Chim. Acta. 49, 389 395 (1973).
  • 112
    Sybert, V.P., Dale, B.A., Holbrook, K.A. Ichthyosis vulgaris: identification of a defect in filaggrin synthesis correlated with an absence of keratohyalin granules. J. Invest. Dermatol. 84, 191 194 (1985).
  • 113
    Denda, M., Hori, J., Koyama, J, et al.Stratum corneum sphingolipids and free amino acids in experimentally-induced scaly skin. Arch. Derm. Res. 284, 363 367 (1992).
  • 114
    Horii, I., Nakayama, Y., Obata, M., Tagami, H. Stratum corneum hydration and amino acid content in xerotic skin. Br. J. Dermatol. 121, 587 592 (1989).
  • 115
    Tezuka, T., Qing, J., Saheki, M., Kusuda, S., Takahashi, M. Terminal differentiation of facial epidermis of the aged – immunohistochemical studies. Dermatology 188, 21 24 (1994).
  • 116
    Scott, I.R. & Harding, C.R. A filaggrin analogue to increase natural moisturising factor synthesis in skin. Dermatology 2000, 773 (1993).
  • 117
    Tezuka, T. Electron microscopal changes in xerotic senilis epidermis. Its abnormal membrane coating granule formation. Dermatologica 166, 57 61 (1983).
  • 118
    Ghadially, R, Halkiersorenson, L., Elias, P.M. Effects of petrolatum on stratum corneum structure and function. J. Am. Acad. Dermatol. 26, 387 396 (1992).
  • 119
    Froebe, C.L., Simion, F.A., Ohlemeyer, H et al. Prevention of stratum corneum lipid phase transition by glycerol – an alternative mechanism for skin moisturisation. J. Soc. Cosmet. Chem. 41, 51 65 (1990).
  • 120
    Summers, R.S., Summers, B, Chandar, P., Feinberg, C., Gursky, R., Rawlings, A.V. The effects of lipids with and without humectant on skin xerosis. J. Soc. Cosmet. Chem. 47, 27 39 (1996).
  • 121
    Bisset, D.L., McBride, J.F., Patrick, L.F. Role of protein and calcium in stratum corneum cell cohesion. Arch. Derm Res. 279, 184 189 (1987).
  • 122
    Takahashi, M., Aizawa, M., Miyazawa, K., Machida, Y. Effects of surface active agents on stratum corneum cell cohesion. J. Soc. Cosmet. Chem. 38, 21 28 (1987).
  • 123
    Lundstrom, A. & Egelrud, T. Cell shedding from human plantar skin in vitro: evidence that two different types of protein structures are degraded by a chymotryptic-like enzyme. Arch. Derm Res. 282, 234 237 (1990).
  • 124
    Rattner, H. Dermatologic uses of urea. Acta Derm. Venerol. 37, 155 165 (1943).
  • 125
    Fredrikkson, T. & Gip, L. Urea creams in the treatment of dry skin and hand dermatitis. Int. J. Dermatol. 14, 442 444 (1975).
  • 126
    Serup, J. A double blind comparison of 2 creams containing urea as the active agent – assessment of efficacy and side-effects by non-invasive techniques and a clinical scoring scheme. Acta Dermato. Venereo. Supplement 177, 34 38 (1992).
  • 127
    McCallion, R. & Po, A.L. Modelling transepidermal water-loss under steady state and non-steady state relative humidities. Int. J. Pharmaceutics 105, 103 112 (1994).
  • 128
    Lodon, M. Urea-containing moisturisers influence barrier properties of normal skin. Arch. Dermatol. Res. 288, 103 107 (1996).
  • 129
    Pigatto, P.D., Bigardi, A.S, Cannistraci, C., Picardo, M. 10% urea cream (Laceran) for atopic dermatitis: a clinical and laboratory evaluation. J. Dermatol. Treat. 7, 171 175 (1996).
  • 130
    Swanbeck, G. Treatment of dry hyperkeratotic, itchy skin with urea containing preparations. Dermatol. Digest. 11, 39 43 (1972).
  • 131
    Hauss, H., Proppe, A, Matthies, C.A. Formulation for the treatment of dry, itching skin in comparison –results from therapeutic use. Dermatosen Beruf Umwelt 41, 184 188 (1993).
  • 132
    Stern, E.C. Topical application of lactic acid in the treatment and prevention of certain disorders of the skin. Urologic Cutaneous Review 50, 106 107 (1943).
  • 133
    Baden, H.P. & Alper, J.C. Keratolytic gel containing salicylic acid in propylene glycol. J. Invest. Dermatol. 61, 330 333 (1973).
  • 134
    Middleton, J.D. Development of a skin cream designed to reduce dry and flaky skin. J. Soc. Cosmet. Chem. 25, 519 534 (1974).
  • 135
    Van Scott, E. & Yu, R.J. Control of keratinisation with α-hydroxy acids and related compounds. Arch. Dermatol. 110, 586 590 (1974).
  • 136
    Wehr, P.W., Krochmal, L., Bagatell, F., Ragsdale, W. A controlled two center study of lactate 12 percent lotion and a petrolatum-based creme in patients with xerosis. Cutis 23, 205 209 (1986).
  • 137
    Dahl, M.C. & Dahl, A.C. 12% lactate lotion for the treatment of xerosis. Arch. Dermatol. 119, 27 30 (1983).
  • 138
    Fartasch, M., Teal, J., Menon, G.K. Mode of action of glycolic acid on human stratum corneum; Ultrastructural and functional evaluation of the epidermal barrier. Arch. Dermatol. Res. 289, 404 409 (1997).
  • 139
    Rawlings, A.V., Davies, A., Carlomusto, M., Pillai, S, Zhang, K., Verdejo, P., Feinberg, C, Nguyen, L., Chandar, P. Effect of lactic acid isomers on keratinocyte ceramide synthesis, stratum corneum lipid levels and stratum corneum barrier function. Arch. Dermatol. Res. 288, 383 390 (1996).
  • 140
    Smith, W.P. Epidermal and dermal effects of topical lactic acid. J. Am. Acad. Dermatol. 35, 388 391 (1996).
  • 141
    Hall, K.J. & Hill, J.C. The skin plasticisation effect of 2-hydroxyoctanoic acid. 1. The use of potentiators. J. Soc. Cosmet. Chem. 37, 397 407 (1986).
  • 142
    Kwoyo Hakko Kogyo Co. Pyrrolidone carboxylic acid esters containing composition used to prevent loss of moisture from the skin. Patent JA 48 82 046 (1982).
  • 143
    Org Santerre. l-pyrrolidone carboxylic acid-sugar compounds as rehydrating ingredients in cosmetics Patent Fr 2 277 823 (1977).
  • 144
    Clar, E.J. & Fourtanier, A. L’acide pyrrolidone carboxylique (PCA) et la peau. Int. J. Cosmet Sci. 3, 101 113 (1981).
  • 145
    Middleton, J.D. & Roberts, M.E. Effects of a skin cream containing the sodium salts of pyrrolidone carboxylic acid on dry and flaky skin. J. Soc. Cosmet. Chem. 29, 201 205 (1978).
  • 146
    Mao-Qiuang, M., Feingold, K.R., Elias, P.M. Exogenous lipids influence permeability barrier recovery in acetone-treated murine skin. Arch. Dermatol. 129, 728 738 (1993).
  • 147
    Zettersten, E.M., Ghadially, R., Feingold, K.R., Crumrine, D, Elias, P.M. Optimal ratios of topical stratum corneum lipids improve barrier recovery in chronologically aged skin. J. Am. Acad. Dermatol. 37, 403 408 (1997).
  • 148
    Yang, L., Mao-Qiang, M., Taljbeni, M., Elias, P.M., Feingold, K.R. Topical stratum corneum lipids accelerate barrier repair after tape-stripping, solvent treatment and some but not all types of detergent treatment. Br. J. Dermatol. 133, 679 685 (1995).
  • 149
    Di Nardo, A., Sugino, K., Wertz, P.W., Ademola, J., Maibach, H.J. Sodium lauryl sulphate (SLS) induced irritant contact dermatitis: a correlation between ceramides and in vivo parameters of irritation. Contact Dermatitis 35, 86 91 (1996).
  • 150
    Linter, K., Mondon, P., Girard, F. The effect of a synthetic ceramide 2 on transepidermal water loss after stripping or SLS treatment: an in vivo study. Int. J. Cosmet. Chem. 19, 15 25 (1997).
  • 151
    Di Nardo, A., Wertz, P., Giannetti, A., Seidenari, S. Ceramide and cholesterol composition of the skin of patients with atopic dermatitis. Acta Dermato. Venereo. 78, 27 30 (1998).
  • 152
    Prottey, C., Hartop, P.J., Press, M. Correction of the cutaneous manifestations of essential fatty acid deficiency in man by application of sunflower seed oil to the skin. J. Invest. Dermato. 64, 228 234 (1975).
  • 153
    Conti, A., Rogers, J., Verdejo, P., Rawlings, A.V. Seasonal influences on stratum corneum ceramide 1 fatty acids and the influence of topical essential fatty acids. Int J. Cosmet. Sci. 18, 1 12 (1996).
  • 154
    Brod, J., Traitler, H., De Studer, A., LaCharriere, M. Evolution of lipid composition in skin treated with blackcurrant seed oil. Int. J. Cosmet. Sci. 10, 149 159 (1993).
  • 155
    Zhang, K., Kosturko, R., Rawlings, A.V. The effect of thiols on epidermal lipid biosynthesis. J. Invest. Dermatol. 104, 687 (1995).
  • 156
    Carlomusto, M., Pillai, K., Rawlings, A.V. Human keratinocytes in vitro can utilise exogenously supplied sphingolipid analogues for keratinocyte ceramide biosynthesis. J. Invest. Dermatol. 106, 919 (1996).
  • 157
    Davies, A., Verdejo, P., Feinberg, C., Rawlings, A.V. Increased stratum corneum ceramide levels and improved barrier function following treatment with tetraacetylphytosphingosine. J. Invest. Dermatol. 106, 918 000 (1996).
  • 158
    Liu, B., Obeid, L.M., Hannun, Y. Sphingomyelinases in cell regulation. Seminars Cell. Dev. Biol. 8, 311 322 (1997).
  • 159
    Spiegel, S. & Merrill, A.H. Sphingolipid metabolism and cell growth regulation. FASEB J. 10, 1388 1397 (1996).
  • 160
    Hunnan, Y.A. Functions of ceramides in cordinating cellular responses to stress. Science 274, 1855 1859 (1996).
  • 161
    Merrill, A.H., Schmelz, E.-M., Dillehay, D.L, et al.Sphingolipids – The enigmatic lipid class: biochemistry, physiology and pathophysiology. Toxic Appl. Pharmacol. 142, 208 225 (1997).
  • 162
    Fori, M., Jensen, J.M., Schutze, S., Kronke, M., Proksch, E. Acidic and neutral sphingomyelinases generating ceramides for the skin barrier in outer and inner epidermal layers of aged mice. J. Invest. Dermatol. 110, 672 (1998).
  • 163
    Pillai, K., Frew, L., Cho, S., Rawlings, A.V. Synergy between the vitamin D precursor, 25 hydroxyvitamin D and short chain ceramides on human keratinocyte growth and differentiation. J. Invest. Dermatol. Suppl. 1, 39 45 (1996).
  • 164
    Carlomusto, M., Mahajan, M., Pillai, S. Vitamin D-mediated keratinocyte differentiation does not involve sphingomyelin hydrolysis. J. Invest. Dermatol. 108, 660 (1997).
  • 165
    Bosko, C., Samares, S., Santanastasio, H., Rawlings, A.V. Influence of fatty acid composition of acylceramides on keratinocyte differentiation. J. Invest. Dermatol. 106, 871 (1996).
  • 166
    Marsh, N.N., Elias, P.M., Holleram, W.M. Glucosylceramides stimulate murine epidermal hyperproliferation. J. Clin. Invest. 95, 2903 2909 (1995).
  • 167
    Uchida, Y., Iwamori, M, Nagai, Y. Activation of keratinisation of keratinocytes from fetal rat skin with N (linoleoyl) ω-hydroxy fatty acyl sphingosyl glucose as a marker of epidermis. Biochim. Biophys. Res. Commun. 179, 162 168 (1990).
  • 168
    Takuji, M., Yasukohchi, T., Hirobe, M., Arakane, K., Adachi, K. The protease as a cleansing agent and its stabilisation by chemical modification. J. Soc. Cosmet. Chem. Jpn 27, 276 288 (1993).