• Paraganglia;
  • Timofeew's corpuscles;
  • neuropeptides;
  • nitric oxide synthase

Triple label immunohistochemistry was used to study the coexistence of the catecholamine-synthesising enzymes dopamine beta-hydroxylase (DBH) and tyrosine hydroxylase (TH) and several neuropeptides including neuropeptide Y (NPY), vasoactive intestinal polypeptide (VIP), substance P (SP), calcitonin gene-related peptide (CGRP), somatostatin (SOM) and galanin (GAL) as well as nitric oxide synthase (NOS) in developing pelvic paraganglion cells in a series of human male fetal, neonatal and infant specimens ranging in age from 13 wk of gestation to 3 y postnatal. 13–20 wk old fetal specimens possessed large clusters of paraganglion cells lying lateral to the urinary bladder and prostate gland which were intensely DBH-immunoreactive (-IR) but lacked TH, NOS and the neuropeptides investigated. With increasing fetal age small clusters of paraganglion cells were observed in the muscle coat of the urinary bladder. At 23 wk of gestation occasional paraganglion cells were NOS or NPY-IR while at 26 wk of gestation the majority of paraganglion cells were TH-IR and a few were SOM or GAL-IR. Some postnatal paraganglia within the bladder musculature contained cells which were all VIP, SP or CGRP-IR while others displayed coexistence of NOS and NPY, SP and CGRP, or NPY and VIP. The presence of NOS in certain paraganglion cells indicates their capacity to generate nitric oxide (NO). These results show that human paraganglion cells develop different phenotypes possibly dependent upon their location within the bladder wall. A delicate plexus of branching varicose nerves was observed in the fetal paraganglia which increased in density with increasing gestational age. The majority of these nerves were VIP-IR while others were CGRP, SP, NPY, NOS or GAL-IR. The presence of nerve terminals adjacent to the paraganglion cells implies a neural influence on the functional activity of the paraganglia. Some paraganglia in the late fetal and early postnatal specimens contained Timofeew's sensory corpuscles, resembling pacinian corpuscles in their morphology. The central nerve fibre of these corpuscles displayed immunoreactivity for SP, CGRP and NOS, the latter indicating a possible role for NO in afferent transmission from the urinary bladder. In addition, a few corpuscles were penetrated by a noradrenergic nerve fibre immunoreactive for NPY and TH, which may have a modulatory role on the sensory receptor.