SEARCH

SEARCH BY CITATION

References

  • Van Den Akker E, Forlani S, Chawengsaksophak K, De Graaff W, Beck F, Meyer BI, et al. (2002) Cdx1 and Cdx2 have overlapping functions in anteroposterior patterning and posterior axis formation. Development 129, 21812193.
  • Amaya E, Musci TJ, Kirschner MW (1991) Expression of a dominant negative receptor mutant of the FGF receptor disrupts mesoderm formation in Xenopus embryos. Cell 66, 257270.
  • Balinsky BI (1981) An Introduction to Embryology, 5th edn. Toronto: Saunders.
  • Bastian H, Gruss P (1990) A murine even-skipped homologue, Evx-1, is expressed during early embryogenesis and neurogenesis in a biphasic manner. EMBO J. 9, 18391852.
  • Beck CW, Slack JMW (1998) Analysis of the developing Xenopus tailbud reveals separate phases of gene expression during determination and outgrowth. Mech. Dev. 72, 4152.
  • Beck CW, Slack JMW (1999) A developmental pathway controlling outgrowth of the Xenopus tailbud. Development 126, 16111620.
  • Bijtel J (1931) Ueber die Entwicklung des Schwanzes bei Amphibien. Arch. Entw. Mech. 125, 448486.
  • Brooke NM, Garcia-Fernandez J, Holland PW (1998) The ParaHox gene cluster is an evolutionary sister of the Hox gene cluster. Nature 392, 920922.
  • Bulman MP, Kusumi K, Frayling TM, McKeown C, Garrett C, Lander ES, et al. (2000) Mutations in the human delta homologue, DLL3, cause axial skeletal defects in spondylocostal dysostosis. Nat. Genet. 24, 438441.
  • Capdevila J, Izpisua Belmonte JC (2001) Patterning mechanisms controlling vertebrate limb development. Annu. Rev. Cell Dev. Biol. 17, 87132.
  • Catala M, Teillet MA, De Robertis EM, Le Douarin NM (1996) A spinal cord fate map in the avian embryo: While regressing, Hensen's node lays down the notochord and floor plate thus joining the spinal cord lateral walls. Development 122, 25992610.
  • Catala M, Teillet MA, Le Douarin NM (1995) Organization of the tailbud analyzed with the quail-chick chimaera system. Mech. Dev. 51, 5165.
  • Catala M (2002) Genetic control of caudal development. Clin. Genet. 61, 8996.
  • Chapman DL, Papaioannou VE (1998) Three neural tubes in mouse embryos with mutations in the T-box genes Tbx6. Nature 391, 695697.
  • Conlon RA, Reaume AG, Rossant J (1995) Notch1 is required for the coordinate segmentation of somites. Development 121, 15331545.
  • Conlon FL, Sedgwick SG, Weston KM, Smith JC (1996) Inhibition of Xbra transcription activation causes defects in mesodermal patterning and reveals autoregulation of Xbra in dorsal mesoderm. Development 122, 24272435.
  • Connors SA, Trout J, Ekker M, Mullins MC (1999) The role of tolloid/mini fin in dorsoventral pattern formation of the zebrafish embryo. Development 126, 31193130.
  • Cotton JA, Page RD (2002) Going nuclear: Gene family evolution and vertebrate phylogeny reconciled. Proc. R. Soc. Lond. B. Biol. Sci. 269, 15551561.
  • Criley BB (1969) Analysis of the embryonic sources and mechanisms of development of posterior levels of chick neural tubes. J. Morphol. 128, 465501.
  • Davidson LA, Keller RE (1999) Neural tube closure in Xenopus laevis involves medial migration, directed protrusive activity, cell intercalation and convergent extension. Development 126, 45474556.
  • Davis RL, Kirschner MW (2000) The fate of cells in the tailbud of Xenopus laevis. Development 127, 255267.
  • De Robertis EM, Fainsod A, Gont LK, Steinbesser H (1994) The evolution of the vertebrate gastrulation. Dev. Suppl. 117124.
  • Dheen T, Sleptsova-Friedrich I, Xu Y, Clark M, Lehrach H, Gong Z, et al. (1999) Zebrafish tbx-c functions during formation of midline structures. Development 126, 27032713.
  • Dollé P, Fraulob V, Duboule D (1994) Developmental expression of the mouse Evx-2 gene: relationship with the evolution of the HOM/Hox complex. Dev. Suppl. 143153.
  • Ehrman LA, Yutzey KE (2001) Anterior expression of the caudal homologue cCdx-B activates a posterior genetic program in avian embryos. Dev. Dyn. 221, 412421.
  • Evrard YA, Lun Y, Aulehala A, Gan L, Johnson RL (1998) Lunatic fringe is an essential mediator of somite segmentation and patterning. Nature 394, 377380.
  • Ferrier DE, Minguillon C, Cebrian C, Garcia-Fernandez J (2001) Amphioxus Evx genes: Implications for the evolution of the Midbrain–Hindbrain Boundary and the chordate tailbud. Dev. Biol. 237, 270281.
  • Ferry D (2001) The Epistles of Horace, epis. I.12, New York: Farrar, Straus and Giroux.
  • Fox MH (1949) Analysis of some phases of melanoblast migration in the barred Plymouth rock embryos. Physiol. Zool. 22, 122.
  • Gajovic S, Kostovic-Knezevic L (1995) Ventral ectodermal ridge and ventral ectodermal groove: Two distinct morphological features of the developing rat embryo tail. Anat. Embryol. (Berl.) 192, 181187.
  • Galceran J, Fariñas I, Depew MJ, Clevers H, Grosschedl R (1999) Wnt3a−/−-like phenotype and limb deficiency in Lef1−/−/Tcf1−/− mice. Genes Dev. 13, 709717.
  • Gamer LW, Wolfman NM, Celeste AJ, Hattersley G, Hewick R, Rosen V (1999) A novel BMP expressed in developing mouse limb, spinal cord, and tailbud is a potent mesoderm inducer in Xenopus embryos. Dev. Biol. 208, 222232.
  • Gawantka V, Pollet N, Delius H, Vingron M, Pfister R, Nitsch R, et al. (1998) Gene expression screening in Xenopus identifies molecular pathways, predicts gene function and provides a global view of embryonic patterning. Mech. Dev. 77, 95141.
  • Gilbert SF (1997) Developmental Biology, 5th edn. Sunderland, MA: Sinauer.
  • Gofflot F, Hall M, Morriss-Kay GM (1997) Genetic patterning of the developing mouse tail at the time of posterior neuropore closure. Dev. Dyn. 210, 431445.
  • Gofflot F, Hall M, Morriss-Kay GM (1998) Genetic patterning of the posterior neuropore region of curly tail mouse embryos: Deficiency of Wnt5a expression. Int. J. Dev. Biol. 42, 637644.
  • Goldman DC, Martin GR, Tam PPL (2000) Fate and function of the ventral ectodermal ridge during mouse tail development. Development 127, 21132123.
  • Gont LK, Steinbeisser H, Blumberg B, De Robertis EM (1993) Tail formation as a continuation of gastrulation: The multiple cell populations of the Xenopus tailbud derive from the late blastopore lip. Development 119, 9911004.
  • Greco TL, Takada S, Newhouse MM, McMahon JA, McMahon AP, Camper SA (1996) Analysis of the vestigial tail mutation demonstrates that Wnt-3a gene dosage regulates mouse axial development. Genes Dev. 10, 313324.
  • Griffith CM, Sanders EJ (1991) Effects of extracellular matrix components on the differentiation of chick embryo tail bud mesenchyme in culture. Differentiation 47, 6168.
  • Griffith CM, Wiley MJ, Sanders EJ (1992) The vertebrate tailbud: Three germ layers from one tissue. Anat. Embryol. (Berl.) 185, 101113.
  • Grüneberg H (1954) Genetical studies on the skeleton of the mouse. VIII. curly tail. J. Genet. 52, 5267.
  • Grüneberg H (1956) A ventral ectodermal ridge of the tail in mouse embryos. Nature 177, 787788.
  • Grüneberg H, Des Wickramaratne GA (1974) A re-examination of two skeletal mutants of the mouse, vestigial tail (vt) and congenital hydrocephalus (ch). J. Embryol. Exp. Morphol. 31, 207222.
  • Haas K, Sin WC, Javaherian A, Li Z, Cline HT (2001) Single-cell electroporation for gene transfer in vivo. Neuron 29, 583591.
  • Haas K, Jensen K, Sin WC, Foa L, Cline HT (2002) Targeted electroporation in Xenopus tadpoles in vivo – from single cells to the entire brain. Differentiation 70, 148154.
  • Hall BK (1998) Germ layers and the germ-layer theory revisited: Primary and secondary germ layers, neural crest as a fourth germ layer, homology, and demise of the germ-layer theory. Evol. Biol. 30, 121186.
  • Hall BK (2000) A role of epithelial–mesenchymal interactions in tail growth/morphogenesis and chondrogenesis in embryonic mice. Cells Tissues Organs 166, 614.
  • Hall M, Gofflot F, Iseki S, Morriss-Kay GM (2001) Effects of the curly tail genotype on neuroepithelial integrity and cell proliferation during late stages of primary neurulation. J. Anat. 199, 645655.
  • Harris WA, Hartenstein V (1991) Neuronal determination without cell division in Xenopus embryos. Neuron 6, 499515.
  • Hatschek B (1893) The Amphioxus and its Development. London: Swan Sonnenschein.
  • Herrmann BG, Labeit S, Poustka A, King TR, Lehrach H (1990) Cloning of the T gene required in mesoderm formation in the mouse. Nature 343, 617622.
  • Holland LZ (2002) Heads or tails? Amphioxus and the evolution of anterior-posterior patterning in deuterostomes. Dev. Biol. 241, 209228.
  • Holland PWH, Koschorz B, Holland LZ, Herrmann BG (1995) Conservation of Brachyury (T) genes in amphioxus and vertebrates: Developmental and evolutionary implications. Development 121, 42834291.
  • Holland ND, Panganiban G, Henyey EL, Holland LZ (1996) Sequence and developmental expression of AmphiDll, an amphioxus Distal-less gene transcribed in the ectoderm, epidermis, and nervous system: Insights into evolution of craniate fore-brain and neural crest. Development 122, 29112920.
  • Holland LZ, Rached LA, Tamme R, Holland ND, Inoko H, Shiina T, et al. (2001) Characterization and developmental expression of the amphioxus homolog of Notch (AmphiNotch): Evolutionary conservation of multiple expression domains in amphioxus and vertebrates. Dev. Biol. 232, 493507.
  • Holmdahl DE (1925a) Die erste Entwicklung des Körpers bei den Vögeln und Säugetieren, inkl. dem Menschen, besonders mit Rücksicht auf die Bildung des Rückenmarks, des Zöloms und der entodermalen Kloake nebst einem Exkurs über die Entstehung der Spina bifida in der Lumbosakral region I. Gegenbaurs Morph. Jahrb. 54, 333384.
  • Holmdahl DE (1925b) Die erste Entwicklung des Körpers bei den Vögeln und Säugetieren, inkl. dem Menschen, besonders mit Rücksicht auf die Bildung des Rückenmarks, des Zöloms und der entodermalen Kloake nebst einem Exkurs über die Entstehung der Spina bifida in der Lumbosakral region II–V. Gegenbaurs Morph. Jahrb. 55, 112208.
  • Holmdahl DE (1925c) Experimentelle Untersuchungen über die Lage der Grenze zwischen primärer and sekundärer Körperentwicklung beim Huhn. Anat. Anz. 59, 393396.
  • Hughes AF, Freeman RB (1974) Comparative remarks on the development of the tail cord among higher vertebrates. J. Embryol. Exp. Morphol. 32, 355363.
  • Joly JS, Maury M, Joly C, Duprey P, Boulekbache H, Condamine H (1992) Expression of a zebrafish caudal homeobox gene correlates with the establishment of posterior cell lineages at gastrulation. Differentiation 50, 7587.
  • Joly JS, Joly C, Schulte-Merker S, Boulekbache H, Condamine H (1993) The ventral and posterior expression of the gene eve1 is perturbed in dorsalized and mutant embryos. Development 119, 12611275.
  • Joutel A, Dodick DD, Parisi JE, Cecillon M, Tournier-Lasserve E, Bousser MG (2000) De novo mutation in the Notch-3 gene causing CADASIL. Ann. Neurol. 47, 388391.
  • Kanki JP, Ho RK (1997) The development of the posterior body in zebrafish. Development 124, 881893.
  • Katsuyama Y, Sato Y, Wada S, Saiga H (1999) Ascidian tail formation requires caudal function. Dev. Biol. 213, 257268.
  • Kelly GM, Greenstein P, Ereztilmaz DF, Moon RT (1995) Zebrafish Wnt8 and Wnt8b share a common activity but are involved in distinct developmental pathways. Development 121, 17871799.
  • Kimmel CB, Warga RM (1987a) Cell lineages generating axial muscle in the zebrafish embryo. Nature 327, 234237.
  • Kimmel CB, Warga RM (1987b) Indeterminate cell lineage of the zebrafish embryo. Dev. Biol. 124, 269280.
  • Kingsbury BF (1932) The ‘law’ of cephalocaudal differential growth in its application to the nervous system. J. Comp. Neurol. 56, 431463.
  • Knezevic V, De Santo R, Mackem S (1998) Continuing organizer function during chick tail development. Development 125, 17911801.
  • Von Kölliker A (1879) Entwickelungsgeschichte des Menschen und der Höheren Thiere. Zweite ganz umgearbeitere Auflage. Leipzig: Wilhelem Engelmann.
  • Von Kölliker A (1884) Die Embryonalen Keimblätter und die Gewebe. Ziet. Wiss. Zool. 40, 179213.
  • Von Kölliker A (1889) Handbuch der Gewebelehre des Menschen. 6. Umgearbeitere Auflage. Erster Band: Die allgemeine Gewebelehre und die Systems der Haut, Knochen und Muskeln. Leipzig: Wilhelm Engelmann.
  • Le Douarin NM, Teillet M-A, Catala M (1998) Neurulation in amniote vertebrates: A novel view deduced from the use of quail-chick chimeras. Int. J. Dev. Biol. 42, 909916.
  • Lyons GE, Houzelstein D, Sassoon D, Robert B, Buckingham ME (1992) Multiple sites of Hox-7 expression during mouse embryogenesis: Comparison with retinoic acid receptor mRNA localization. Mol. Reprod. Dev. 32, 303314.
  • Mallatt J, Sullivan J (1998) 28S and 18S rDNA sequences support the monophyly of lampreys and hagfishes. Mol. Biol. Evol. 15, 17061718.
  • Mathis L, Kulesa PM, Fraser SE (2001) FGF receptor signalling is required to maintain neural progenitors during Hensen's node progression. Nat. Cell Biol. 3, 559566.
  • Mills CL, Bellairs R (1989) Mitosis and cell death in the tail of the chick embryo. Anat. Embryol. (Berl.) 180, 301308.
  • Müller F, O'Rahilly R (1987) The development of the human brain, the closure of the caudal neuropore, and the beginning of secondary neurulation at stage 12. Anat. Embryol. (Berl.) 176, 413430.
  • Murdoch JN, Doudney K, Paternotte C, Copp AJ, Stanier P (2001) Severe neural tube defects in the loop-tail mouse result from mutation of Lpp1, a novel gene involved in floor plate specification. Hum. Mol. Genet. 10, 25932601.
  • Nakao T, Ishizawa A (1984) Light- and electron-microscopic observations of the tail bud of the larval lamprey (Lampetra japonica), with special reference to neural tube formation. Am. J. Anat. 170, 5571.
  • Nicol D, Meinertzhagen IA (1988) Development of the central nervous system of the larva of the ascidian, Ciona intestinalis L. II. Neural plate morphogenesis and cell lineages during neurulation. Dev. Biol. 130, 737766.
  • Nievelstein RA, Hartwig NG, Vermeij-Keers C, Valk J (1993) Embryonic development of the mammalian caudal neural tube. Teratology 48, 2131.
  • Oda T, Elkahloun AG, Pike BL, Okajima K, Krantz ID, Genin A, et al. (1997) Mutations in the human Jagged1 gene are responsible for Alagille syndrome. Nat. Genet. 16, 235242.
  • Papan C, Campos-Ortega JA (1994) On the formation of the neural keel and neural tube in the zebrafish Danio (Brachydanio) rerio. Rouxs Arch. Dev. Biol. 203, 178186.
  • Partanan J, Schwartz L, Rossant J (1998) Opposite phenotypes of hypomorphic and Y766 phosphorylation site mutations reveal a function for Fgfr1 in anteroposterior patterning in mouse embryos. Genes Dev. 12, 23342344.
  • Pasteels J (1939) La formation de la queue chez les Vertébrés. Ann. Soc. Royale Zool. De Belgique 70, 3351.
  • Pasteels J (1942) New observations concerning the maps of presumptive areas of the young amphibian gastrula (Amblystoma and Discoglossus). J. Exp. Zool. 89, 255281.
  • Pasteels J (1943) Proliférations et croissance dans la gastrulation et la formation de la queue de vertébrés. Arch. Biol. (Liège) 54, 151.
  • Piavis GW (1971) Embryology. In The Biology of Lampreys (eds HardistyMW, PotterIC), Vol. 1, pp. 361400. London: Academic Press.
  • Rauch GJ, Hammerschmidt M, Blader P, Schauerte HE, Strahle U, Ingham PW, et al. (1997) Wnt5 is required for tail formation in the zebrafish embryo. Cold Spring Harb. Symp. Quant. Biol. 62, 227234.
  • Reichenbach A, Schaaf P, Schneider H (1990) Primary neurulation in teleosts – evidence for epithelial genesis of central nervous system as in other vertebrates. J. Hirnforsch. 31, 153158.
  • Satoh N (1994) Developmental Biology of Ascidians. New York: Cambridge University Press.
  • Sausedo RA, Schoenwolf GC (1993) Cell behaviors underlying notochord formation and extension in avian embryos: Quantitative and immunocytochemical studies. Anat. Rec. 237, 5870.
  • Sausedo RA, Schoenwolf GC (1994) Quantitative analyses of cell behaviors underlying notochord formation and extension in mouse embryos. Anat. Rec. 239, 103112.
  • Schmitz B, Papan C, Campos-Ortega JA (1993) Neurulation in the anterior trunk region of the zebrafish Brachydanio rerio. Rouxs Arch. Dev. Biol. 202, 250259.
  • Schoenwolf GC (1977) Tail (end) bud contributions to the posterior region of the chick embryo. J. Exp. Zool. 201, 227246.
  • Schoenwolf GC (1978) Effects of complete tail extirpation on early development of the posterior region of the chick embryo. Anat. Rec. 192, 289296.
  • Schoenwolf GC (1979) Histological and ultrastructural observations of tailbud formation in the chick embryo. Anat. Rec. 193, 131148.
  • Schoenwolf GC, DeLongo J (1980) Ultrastructure of secondary neurulation in the chick embryo. Am. J. Anat. 158, 4363.
  • Schoenwolf GC (1984) Histological and ultrastructural studies of secondary neurulation in mouse embryos. Am. J. Anat. 169, 361374.
  • Schoenwolf GC, Smith JL (1990) Mechanisms of neurulation: Traditional viewpoint and recent advances. Development 109, 243270.
  • Schubert M, Holland LZ, Stokes MD, Holland ND (2001) Three amphioxus Wnt genes (AmphiWnt3, AmphiWnt5, and AmphiWnt6) associated with the tailbud: The evolution of somitogenesis in chordates. Dev. Biol. 240, 262273.
  • Schulte-Merker S, Van Eeden FJM, Halpern ME, Kimmel CB, Nusslein-Volhard C (1994) no tail (ntl) is the zebrafish homologue of the mouse T (Brachyury) gene. Development 120, 10091015.
  • Seevers CH (1932) Potencies of the end bud and other caudal levels of the early chick embryo, with special reference to the origin to the metanephros. Anat. Rec. 54, 217246.
  • Van Straaten HWM, Copp AJ (2001) Curly tail: A 50-year history of the mouse spina bifida model. Anat. Embryol. 203, 225237.
  • Sun BI, Bush SM, Collins-Racie LA, LaVallie ER, DiBlasio-Smith EA, Wolfman NM, et al. (1999) derrière: a TGF-β family member required for posterior development inXenopus. Development 126, 14671482.
  • Swalla BJ, Just MA, Pederson EL, Jeffrey WR (1999) A multigene locus containing the Manx and bobcat genes is required for development of chordate features in the ascidian tadpole larva. Development 126, 16431653.
  • Tada M, Smith JC (2000) Xwnt11 is a target of Xenopus Brachyury: Regulation of gastrulation movements via Dishevelled, but not through the canonical Wnt pathway. Development 127, 22272238.
  • Takada S, Stark KL, Shea MJ, Vassileva G, McMahon JA, McMahon AP (1994) Wnt-3a regulates somite and tailbud formation in the mouse embryo. Genes Dev. 8, 174189.
  • Tam PP, Tan SS (1992) The somitogenic potential of cells in the primitive streak and the tailbud of organogenesis-stage mouse embryo. Development 115, 703715.
  • Thisse C, Thisse B, Schilling TF, Postlethwait JH (1993) Structure of the zebrafish snail gene and its expression in wild-type, spadetail and no tail mutant embryos. Development 119, 12031215.
  • Tucker AS, Slack JMW (1995a) Tailbud determination in the vertebrate embryo. Curr. Biol. 5, 807813.
  • Tucker AS, Slack JMW (1995b) The Xenopus tail-forming region. Development 121, 249262.
  • Vogt W (1926) Ueber Wachstum und Gestaltungsbewegungen am hinteren Körperende der Amphibien. Anat. Anz. 61, 6275.
  • Wilson V, Beddington RS (1996) Cell fate and morphogenetic movement of the late mouse primitive streak. Mech. Dev. 55, 7989.
  • Yamaguchi TP, Bradley A, McMahon AP, Jones S (1999) A Wnt5a pathway underlies outgrowth of multiple structures in the vertebrate embryo. Development 125, 12111223.
  • Yu JK, Holland ND, Holland LZ (2002) An amphioxus winged helix/forkhead gene, AmphiFoxD: Insights into vertebrate neural crest evolution. Dev. Dyn. 225, 289297.
  • Zardoya R, Meyer A (1996) Evolutionary relationships of the coelacanth, lungfishes, and tetrapods based on the 28S ribosomal RNA gene. Proc. Natl. Acad. Sci. USA 93, 54495454.
  • Zehr KJ, Munger BL, Jones TE (1989) The morphogenesis of the posterior neural tube and tail in Monodelphis domesticus. Arch. Histol. Cytol. 52, 95108.
  • Zhang N, Gridley T (1998) Defects in somite formation in lunatic fringe-deficient mice. Nature 394, 374377.