SEARCH

SEARCH BY CITATION

References

  • Adams GR (1998) Role of insulin-like growth factor-I in the regulation of skeletal muscle adaptation to increased loading. Exerc. Sport Sci. Rev. 26, 3160.
  • Adams GR (2002) Exercise effects on muscle insulin signalling and action. Invited Review: Autocrine/paracrine IGF-I and skeletal muscle adaptation. J. Appl. Physiol. 93, 11591167.
  • Aziz-Ullah, Goldspink G (1974) Distribution of mitotic nuclei in the biceps brachii of the mouse during post-natal growth. Anat. Rec. 179, 115118.
  • Beauchamp JR, Heslop L, Yu DS, Tajbakhsh S, Kelly RG, Wernig A, et al. (2000) Expression of CD34 and Myf5 defines the majority of quiescent adult skeletal muscle satellite cells. J. Cell Biol. 151, 12211234.
  • Bornemann A, Schmalbruch H (1994) Immunocytochemistry of M-cadherin in mature and regenerating rat muscle. Anat. Rec. 239, 119125.
  • Chakravarthy MV, Fiorotto ML, Schwartz RJ, Booth FW (2001) Long-term insulin-like growth factor-I expression in skeletal muscles attenuates the enhanced in vitro proliferation ability of the resident satellite cells in transgenic mice. Mech. Ageing Dev. 122, 13031320.
  • Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 1162, 156159.
  • Cifuentes-Diaz C, Nicolet M, Alameddine H, Goudou D, Dehaupas M, Rieger F, et al. (1995) M-cadherin localization in developing adult and regenerating mouse skeletal muscle: possible involvement in secondary myogenesis. Mech. Dev. 50, 8597.
  • Cohn RD, Campbell KP (2000) Molecular basis of muscular dystrophies. Muscle Nerve 23, 14561471.
  • Cornelison DD, Wold BJ (1997) Single–cell analysis of regulatory gene expression in quiescent and activated mouse skeletal muscle satellite cells. Dev. Biol. 191, 270283.
  • De Angelis I, Berghella I, Coletta M, Lattanzi I, Zanchi M, Cusella Angelis MG, et al. (1999) Skeletal myogenic progenitors originating from embryonic dorsalaorto coexpress endothelial and myogenic markers and contribute to postnatal muscle growth and regeneration. J. Cell Biol. 147, 869878.
  • Edwall D, Schalling M, Jennische E, Norstedt G (1989) Induction of Insulin-like Growth Factor-I messenger ribonucleic acid during regeneration of rat skeletal muscle. Endocrinology 124, 820825.
  • Ferrari G, Cusella-De Angelis G, Coletta M, Paolucci E, Stornaiuolo A, Cossu G, et al. (1998) Muscle regeneration by bone marrow-derived myogenic progenitors. Science 279, 15281530.
  • Gilmour RS (1994) The implications of insulin-like growth factor mRNA heterogeneity. J. Endocrinol. 140, 13.
  • Goldspink G, Yang SY, Skarli M, Vrbova G (1996) Local growth regulation is associated with an isoform of IGF-I that is expressed in normal muscles but not in dystrophic muscles when subjected to stretch. J. Physiol. 495, 162.
  • Goldspink G (1999) Changes in muscle mass and phenotype and the expression of autocrine and systemic growth factors by muscle in response to stretch and overload. J. Anat. 194, 323334.
  • Griffin G, Williams P, Goldspink G (1971) Region of longitudinal growth in striated muscle fibres. Nature New Biol. 232, 2829.
  • Grounds MD (1998) Age-associated changes in the response of skeletal muscle cells to exercise and regeneration. Ann. NY Acad. Sci. 854, 7891.
  • Haddad F, Adams GR (2002) Selected contribution: acute cellular and molecular responses to resistance exercise. J. Appl. Physiol. 93, 394403.
  • Hill M, Goldspink G (2003) Expression and splicing of the insulin-like growth factor gene in rodent muscle is associated with muscle satellite (stem) cell activation following local tissue damage. J. Physiol. 549, 409418.
  • Irintchev A, Zeschnigk M, Starzinski-Powitz A, Wernig A (1994) Expression pattern of M-cadherin in normal, denervated and regenerating mouse muscle. Dev. Dyn. 199, 326337.
  • Jennische E, Hansson HA (1987) Regenerating skeletal muscle cells express insulin-like growth factor I. Acta Physiol. Scand. 130, 327332.
  • Jennische E, Skottner A, Hansson HA (1987) Satellite cells express the trophic factor IGF-I in regenerating skeletal muscle. Acta Physiol. Scand. 129, 915.
  • Lieber RL, Friden J (1999) Mechanisms of muscle injury after eccentric contraction. J. Sci. Med. Sport 2, 253265.
  • Marsh DR, Criswell DS, Hamilton MT, Booth FW (1997) Association of IGF-I mRNA expressions with muscle regeneration in young, adult, and old rats. Am. J. Physiol. 273, R353R358.
  • Mauro A (1961) Satellite cells of skeletal muscle fibres. J. Biophys. Biochem. Cytol. 9, 493495.
  • McKoy G, Ashley W, Mander J, Yang SY, Williams N, Russell B, et al. (1999) Expression of insulin-like growth factor–I splice variant and structural genes in rabbit skeletal muscle induced by stretch and stimulation. J. Physiol. 516, 583592.
  • Moore R, Walsh FS (1993) The cell adhesion molecule M-cadherin is specifically expressed in developing and regenerating, but not denervated skeletal muscle. Development 117, 14091420.
  • Moorman AFM, De Boer PAJ, Linders M, Charles R (1984) The histone H5 variant in Xenopus laevis. Cell Differ. 14, 113123.
  • Moss FP, Leblond CP (1970) Satellite cells as the source of nuclei in muscles of growing rats. Anat. Rec. 170, 421435.
  • Owino V, Yang SY, Goldspink G (2001) Age-related loss of skeletal muscle function and the inability to express the autocrine form of insulin-like growth factor−1 (MGF) in response to mechanical overload. FEBS Lett. 505, 259263.
  • Pye D, Watt DJ (2001) Dermal fibroblasts participate in the formation of new muscle fibres when implanted into regenerating normal mouse muscle. J. Anat. 198, 163173.
  • Qu-Petersen Z, Deasy B, Jankowski R, Ikezawa M, Cummins J, Pruchnic R, et al. (2002) Identification of a novel population of muscle stem cells in mice: potential for muscle regeneration. J. Cell Biol. 157, 851864.
  • Rosenblatt JD, Cullen MJ, Irintchev A, Wernig A (1999) M-cadherin is a reliable molecular marker of satellite cells in mouse skeletal muscle. Eur. J. Physiol. 437, R145.
  • Schultz E, Lipton BH (1982) Skeletal muscle cells: changes in proliferation potential as a function of age. Mech. Ageing Dev. 20, 337383.
  • Schultz E (1996) Satellite cell proliferative compartments in growing skeletal muscles. Dev. Biol. 175, 8494.
  • Seale P, Rudnicki MA (2000) A new look at the origin, function and ‘stem-cell’ status of muscle satellite cells. Dev. Biol. 106, 115124.
  • Siegfried JM, Kasprzyk PG, Treston AM, Mulshine JL, Quinn KA, Cuttitta F (1992) A mitogenic peptide amide encoded within the E peptide domain of the insulin-like growth factor IB prohormone. Proc. Natl Acad. Sci. USA 89, 81078111.
  • Tabary JC, Tabary C, Tardieu C, Tardieu G, Goldspink G (1972) Physiological and structural changes in the cat's soleus muscle due to immobilization at different lengths by plaster casts. J. Physiol. 224, 231244.
  • Wernig A, Irintchev A, Weisshaupt P (1990) Muscle injury, cross-sectional area and fibre type distribution in mouse soleus after intermittent wheel-running. J. Physiol. 428, 639652.
  • Williams P, Goldspink G (1971) Longitudinal growth of striated muscle fibres. J. Cell Sci. 9, 751767.
  • Williams PE, Goldspink G (1976) The effect of denervation and dystrophy on the adaptation of sarcomere number to the function length of the muscle in young and adult mice. J. Anat. 122, 455465.
  • Yang SY, Alnaqeeb M, Simpson H, Goldspink G (1996) Cloning and characterisation of an IGF-I isoform expressed in skeletal muscle subjected to stretch. J. Muscle Res. Cell Motility 17, 487495.
  • Yang SY, Goldspink G (2002) Different roles of the IGF-IEc peptide (MGF) and mature IGF-I in myoblast proliferation and differentiation. FEBS Lett. 522, 156160.