SEARCH

SEARCH BY CITATION

References

  • Aaron JE, Makins NB, Francis RB, Peacock M (1984) Staining of the calcification front in human bone using contrasting fluorochromes in vitro. J. Histochem. Cytochem. 32, 12511261.
  • Akhter MP, Taber BJ, Kimmel DB, Recker RR (1993) Demonstration of fatigue damage in rat tibiae. Proc. Orthop. Res. Soc. 39, 197.
  • Andre T (1956) Studies on the distribution of tritium-labelled dihydrostreptomycin and tetracycline in the body. Acta Radiolog. Suppl. 142, 190.
  • Bentolila V, Boyce TM, Fyhrie DP, Drumb R, Skerry TM, Schaffler MB (1998) Intracortical remodelling in adult rat long bones after fatigue loading. Bone 23, 275281.
  • Blackwood RK (1985) Structure determination and total synthesis of the tetracyclines. In The Tetracyclines. Handbook of Experimental Pharmacology, Vol. 78 (eds HlavkaJJ Boothe JH), pp. 8590. Berlin: Springer-Verlag.
  • Boothe JH, Hlavka JJ (1985) Historical introduction. In The Tetracyclines. Handbook of Experimental Pharmacology, Vol. 78 (eds HlavkaJJ Boothe JH), pp. 13. Berlin: Springer-Verlag.
  • Boyde A, Vesely P, Gray C, Jones SJ (1994) High temporal and spatial resolution studies of bone cells sing real-time confocal reflection microscopy. Scanning 16, 285294.
  • Boyde A (2002) What happens to cracks in bone? In Proceedings of Bioengineering in Ireland (8) and the 16th Meeting of the Northern Ireland Biomecical Engineering Society – Joint Conference (eds FitzPatrickDP, McCormackBAO, DicksonGR), p. 23. Dublin: University College.
  • Burr DB, Martin RB, Schaffler MB, Radin EL (1985) Bone remodelling in response to in vivo fatigue microdamage. J. Biomech. 18, 189200.
  • Burr DB, Schaffler MB, Yang KH, Wu DD, Lukoschek M, Kandzari D, et al. (1989) The effects of altered strain environments on bone tissue kinetics. Bone 10, 215221.
  • Burr DB (2000) Damage detection and behaviour in bone. In Proceedings of the 12th Conference of the European Society of Biomechanics (eds PrendergastPJ, LeeTC, CarrAJ), pp. 3839. Dublin: Royal Academy of Medicine in Ireland.
  • Burr DB, Stafford T (1990) Validity of the bulk-staining technique to separate artifactual from in vivo bone microdamage. Clin. Orthop. 260, 305308.
  • Buyske DA, Eisner HJ, Kelly RG (1960) Concentration and persistence of tetracycline and chlortetracycline in bone. J. Pharmacol. Exp. Ther. 130, 150156.
  • Carter DR, Hayes WC (1976) Fatigue life of compact bone – I. Effects of stress ampliture, temperature and density. J. Biomech. 9, 2734.
  • Carter DR, Hayes WC (1977) Compact bone fatigue damage: a microscopic examination. Clin. Orthop. 127, 265274.
  • Carter DR, Caler WE (1985) A cumulative damage model for bone fracture. J. Orthop. Res. 3, 8490.
  • Chamay A (1970) Mechanical and morphological aspects of experimental overload and fatigue in bone. J. Biomech. 3, 263270.
  • Chamay A, Tschantz P (1972) Mechanial influences in bone remodeling. Experimental research on Wolff's Law. J. Biomech. 5, 173180.
  • Daffner RH, Pavlov H (1992) Stress fractures: current concepts. Am. J. Roentgen. 159, 245252.
  • Forwood MR, Parker AW (1989) Microdamage in response to repetitive torsional loading in the rat tibia. Calcif. Tissue Int. 45, 4753.
  • Frost HM (1960) Presence of microscopic cracks in vivo in bone. H. Ford Hosp. Med. Bull. 8, 2535.
  • Frost HM, Villanueva AR, Roth H, Stanisavljevic S (1961) Tetracycline bone labeling. J. New Drugs 1, 206216.
  • Frost HM (1963a) Measurement of human bone formation by means of tetracycline labeling. Can. J. Biochem. Physiol. 4, 3142.
  • Frost HM (1963b) Bone Remodeling Dynamics. Springfield, IL: Thomas.
  • Frost HM (1966a) The Bone Dynamics in Osteoporosis and Osteomalacia. Springfield, IL: Thomas.
  • Frost HM (1966b) Relation between bone-tissue and cell population dynamics, histology and tetracycline labelling. Clin. Orthop. 49, 6575.
  • Frost HM (1969) Tetracycline-based analysis of bone remodelling. Calcif. Tissue Res. 3, 211237.
  • Frost HM (1973) Bone Remodeling and its Relationship to Metabolic Bone Diseases. Springfield, IL: Charles C. Thomas.
  • Fyhrie DP, Schaffler MB (1994) Failure mechanisms in human vertebral cancellous bone. Bone 15, 105109.
  • Goldstein SA (1987) The mechanical properties of trabecular bone; dependence on anatomical location and function. J. Biomech. 20, 10551061.
  • Gunnlaugsson T, Kruger PE, Lee TC, Parkesh R, Pfeffer FM, Hussey GM (2003) Dual responsive chemosensors for anions: the combination of fluorescent PET (Photoinduced Electron transfer) and colorimetric chemosensors in a single molecule. Tetrahedron Let. in press.
  • Hall BK (1992) Historical overview of studies on bone growth and repair. In Bone, Vol. 6 (ed. HallBK), pp. 119. Boca Raton: CRC Press.
  • Harris WH (1960) A microscopic method of determining rates of bone growth. Nature 168, 10381039.
  • Harris WH, Jackson RH, Jowsey J (1962) The in vivo distribution of tetracyclines in canine bone. J. Bone Joint Surg. Am. 44A, 13081312.
  • Heaney RP (1993) Is there a role for bone quality in fragility fractures? Calcif. Tissue Int. 1, 53 (Suppl. 1), S3–S6.
  • Huheey JE (1983) Inorganic Chemistry: Principles of Structure and Reactivity, 3rd edn. New York: Harper & Row.
  • Huja SS, Hasan MS, Pidaparti R, Turner CH, Garetto LP, Burr DB (1999) Development of a fluorescent light technique for evaluating microdamage in bone subjected to fatigue loading. J. Biomech. 32, 12431249.
  • Joiner DW, Puchtler H, Sweat F (1968) Staining of immature collagen by resorcin-fuchsin in infant kidneys. J. Roy. Microscop. Soc. 88, 461471.
  • Landis WJ (1995) The strength of a calcified tissue depends in part on the molecular structure and organization of its constituent mineral crystals in their organic matrix. Bone 16, 533544.
  • Lanyon LE, Goodship AE, Pye CJ, MacFie JH (1982) Mechanically adaptive bone remodelling. J. Biomech. 15, 141154.
  • Lee TC, Myers ER, Hayes WC (1998) Fluorescence-aided detection of microdamage in compact bone. J. Anat. 193, 179184.
  • Lee TC, Noelke L, McMahon GT, Mulville JP, Taylor D (1999) Functional adaptation in bone. In Synthesis in Bio Solid Mechanics (eds PedersenP, BendsoeMP), pp. 110. Dortrecht: Kluwer Academic Publishers.
  • Lee TC, Arthur TL, Gibson LJ, Hayes WC (2000a) Sequential labelling of microdamage in bone using chelating agents. J. Orthop. Res. 18, 322325.
  • Lee TC, O'Brien FJ, Taylor D (2000b) The nature of fatigue damage in bone. Int. J. Fat. 22, 847853.
  • Lee TC, Staines A, Taylor D (2002) Bone adaptation to load: microdamage as a stimulus for bone remodelling. J. Anat. 201, 437446.
  • Martin RB, Burr DB (1989) Structure, Function and Adaptation of Compact Bone. New York: Raven Press.
  • Martin RB (1995) Mathematical model for repair of fatigue damage and stress fracture in osteonal bone. J. Orthop. Res. 13, 309316.
  • Martin RB (2002) Is all cortical bone remodelling initiated by microdamage? Bone 30, 813.
  • Matheson GO, Clemen DB, McKenzie DC, Tauntan JE, Lloyd-Smith DR, MacIntgre JG (1985) Stress fractures in athletes: a study of 320 cases. Am. J. Sports Med. 13, 342348.
  • Melton LJ III (1996) Epidemiology of hip fractures: Implications of the exponential increase with age. Bone 18 (Suppl.), 121S125S.
  • Meurman KAO, Elfving S (1980) Stress fracture in soldiers: a multifocal bone disorder. Radiology 134, 483487.
  • Milch RA, Rall DP, Tobie JE (1957) Bone localization of the tetracyclines. J. Natl Cancer Inst. 19, 8793.
  • Modis L, Perko M, Foides J (1969) Histochemical examination of supporting tissues by means of fluorescence. II. Fluorochromes as an indicator of lamellar bone mineralization. Acta Morph. Hung. 17, 157166.
  • Mori S, Burr DB (1993) Increased intracortical remodeling following fatigue damage. Bone 14, 103109.
  • Morris JM, Blickenstaff LD (1967) Fatigue Fractures. Springfield, IL: Charles C. Thomas.
  • Norman TL, Wang Z (1997) Microdamage of human cortical bone: incidence and morphology in long bones. Bone 20, 375379.
  • O'Brien FJ, Taylor D, Dickson GR, Lee TC (2000) Visualisation of three dimensional microcracks in compact bone. J. Anat. 197, 413420.
  • O'Brien FJ, Taylor D, Lee TC (2002) An improved labelling technique for monitoring microcracks growth in compact bone. J. Biomech. 35, 523526.
  • O'Brien FJ, Taylor D, Lee TC (2003) Microcrack accumulation at different intervals during fatigue testing of compact bone. J. Biomech. 36, 973980.
  • Olerud S, Lorenzi GL (1970) Triple fluorochrome labeling in bone formation and bone resorption. J. Bone Joint Surg. Am. 52A, 274278.
  • Ott SM (1993) When bone mass fails to predict bone failure. Calcif. Tissue Int. 53 (Suppl. 1), S7S13.
  • Pihlman K, Linder E (1983) Fluorescence microscopical visualization of elastic fibres using basic fuchsin. Histochemistry 79, 157165.
  • Prendergast PJ, Taylor D (1994) Prediction of bone adaptation using damage accumulation. J. Biomech. 27, 10671076.
  • Prendergast PJ, McCormack BAO (2002) ESB Keynote Lecture – Dublin 2000. Outcomes of the 12th conference of the European Society of Biomechanics. J. Biomech. 35, 399400.
  • Rahn BA (1977) Polychrome fluorescence labelling of bone formation, instrumental aspects and experimental use. Zeiss Information 22 (85), 3639.
  • Rahn BA, Perren SM (1970) Calcein blue as a fluorescent label in bone. Experientia 26, 519.
  • Rahn BA, Perren SM (1971) Xylenol orange, a fluorochrome useful in polychrome sequential labelling of calcifying tissues. Stain Technol. 46, 125129.
  • Rahn BA, Perren SM (1972) Alizarinkomplexon, Fluorochrom zur Markierung von Knocken und Dentinanbau. Experientia 28, 180.
  • Recker RR (1993) Bone biopsy and histomorphometry in clinical practice. In Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism, 2nd edn (ed. FavusMJ), pp. 146150. Philadelphia, PA: Lippincott – Raven.
  • Reilly GC, Currey JD (2000) The effects of damage and microcracking on the impact strength of bone. J. Biomech. 33, 337343.
  • Rice JC, Cowin SC, Bowman JA (1988) On the dependence of elasticity and strength of cancellous bone on apparent density. J. Biomech. 21, 155168.
  • Riggs BL, Melton LJ III (1995) The worldwide problem of osteoporosis: insights afforded by epidemiology. Bone 17 (Suppl. ), 505S511S.
  • Rost FWD (1992) Fluorescence Microscopy, Vol. I. Cambridge: Cambridge University Press.
  • Rost FWD (1995) Fluorescence Microscopy, Vol. II. Cambridge: Cambridge University Press.
  • Schaffler MB, Radin EL, Burr DB (1990) Long-term fatigue behaviour of compact bone at low strain magnitude and rate. Bone 11, 321326.
  • Schaffler MB, Pitchford W, Choi K, Riddle JM (1994) Examination of compact bone microdamage using back-scattered electron microscopy. Bone 15, 483488.
  • Schaffler MB, Choi K, Milgrom C (1995) Aging and matrix microdamage accumulation in human compact bone. Bone 17, 521525.
  • Schaffler MB, Boyce TM, Fyhrie DP (1996) Tissue and matrix failure modes in human compact bone during tensile fatigue. Proc. Orthop. Res. Soc. 21, 57.
  • Sherman S, Hadley EC (1993) Aging and bone quality: an unexplored frontier. Calcif. Tissue Int. 53 (Suppl. 1), S1.
  • De Silva AP, Gunaratne HQN, Gunnlaugsson T, Huxley AJM, Rademacher JT, Rice TE (1997a) Signaling recognition events with fluorescent sensors and switches. Chem. Rev. 97, 15151566.
  • De Silva AP, Gunaratne HQN, Gunnlaugsson T, Huxley AJM, Rademacher JT, Rice TE (1997b) Higher generation luminescence PET (photoninduced electron transfer) sensors. In Chemosensors of Ion and Molecular Recognition, NATO ASI Series C: Vol. 492 (eds DesvergneJP, CzarnikAW), pp. 143155. Dortrecht: Kluwer Academic Press.
  • Steendijk R (1964) Studies on the mechanism of the fixation of the tetracyclines to bone. In Bone and Tooth (ed. BlackwoodHJJ), pp. 4963. New York: Pergamon Press.
  • Stover SM, Marti RB, Pool RR, Taylor KT, Harrington TM (1993) In vivo labeling of microdamage in cortical bone tissue. Proc. Orthop. Res. Soc. 18, 541.
  • Suzuki HK, Mathews A (1966) Two-color fluorescent labeling of mineralizing tissues with tetracycline and 2,4-bis[N,N-di-(carbomethyl) aminomethyl] fluorescein. Stain Technol. 41, 5760.
  • Tapp E, Kovacs K, Carroll R (1965) Tetracycline staining of tissues in vitro. Stain Technol. 40, 199203.
  • Taylor D, Lee TC (1998) Measuring the shape and size of microcracks in bone. J. Biomech. 31, 11771180.
  • Taylor D, Kuiper JH (2001) The prediction of stress fractures using a stressed volume concept. J. Orthop. Res. 19, 919926.
  • Taylor D, Lee TC (2003) A crack growth model for the simulation of fatigue in bone. Int. J. Fat. 25, 387395.
  • Timlin JA, Carden A, Morris MD, Rajachar RM, Kohn DH (2000) Raman spectroscopic imaging markers for fatigue-related microdamage in bovine bone. Anal. Chem. 72, 22292236.
  • Treharne RW, Brighton CT (1979) The use and possible misuse of tetracycline as a vital stain. Clin. Orthop. 140, 240246.
  • Vashishth D, Johnson C, Clovis N, Tanner KE, Bonfield W (1994) Double staining technique for histological evaluation of microcracks in cortical bone. Proc. 2nd World Cong. Biomech. I, 44.
  • Verborgt O, Gibson GJ, Schaffler MB (2000) Loss of osteocyte integrity in association with microdamage and bone remodelling after fatifue in vivo. J. Bone Miner. Res. 15, 6067.
  • Wachtel EF, Keaveny TM (1995) The dependence of trabecular damage on applied strain level for bovine trabecular bone. Proc. Orthop. Res. Soc. 20, 132.
  • Zioupos P, Currey JD (1994) The extent of microcracking and the morphology of microcracks in damaged bone. J. Mat. Sci. 29, 978986.
  • Zioupos P, Currey JD, Sedman AJ (1994) An examination of the micromechanics of failure in bone and antler by acoustic emission tests and laser scanning confocal microscopy. Med. Eng. Phys. 16, 203212.
  • Zioupos P, Wang XT, Currey JD (1996) Experimental and theoretical quantification of the development of damage in fatigue tests of bone and antler. J. Biomech. 29, 9891002.
  • Zioupos P (2001) Accumulation of in-vivo fatigue microdamage and its relation to biomechanical properties in ageing human cortical bone. J. Microsc. 201, 270278.