SEARCH

SEARCH BY CITATION

References

  • Adamska I, Kloppstech K, Ohad I. 1993. Early light-inducible protein in pea is stable during light stress but is degraded during recovery at low light intensity. Journal of Biological Chemistry 268: 54385444.
  • Adamska I, Lindahl M, Roobolboza M, Andersson B. 1996. Degradation of the light-stress protein is mediated by an ATP-independent, serine-type protease under low-light conditions. European Journal of Biochemistry 236: 591599.
  • Adamson H, Hiller RG, Vesk M. 1980. Chloroplast development and the synthesis of chlorophyll a and b and chlorophyll-protein complexes I and II in the dark in Tradescantia albiflora (Kunth.). Planta 150: 269274.
  • Adamson H, Packer N, Gregory J. 1985. Chloroplast development and the synthesis of chlorophyll and proto-chlorophyllide in Zostera transferred to darkness. Planta 165: 469476.
  • Amir-Shapira D, Goldschmidt EE, Altman A. 1987. Chlorophyll catabolism in senescing plant tissue: in vivo breakdown intermediates suggest different degradative pathways for citrus fruits and parsley leaves. Proceedings of the National Academy of Science, USA 84: 19011905.
  • Andersen RV. 1992. Characterization of a barley Trna synthetase involved in chlorophyll biosynthesis. In: MurataN, ed. Research in Photosynthesisr, vol. 3. The Hague : Kluwer, 2730.
  • Anderson JM, Chow WS, Goodchild DJ. 1988. Thylakoid membrane organization in sun/shade acclimation. Australian Journal of Plant Physiology 15: 1116.
  • Bachmann A, Fernandez-Lopez J, Ginsburg S, Thomas H, Bouwkamp JC, Solomos T, Matile P. 1994. Stay-green genotypes of Phaseolus vulgaris. Chloroplast proteins and chlorophyll catabolites during foliar senescence. New Phytologist 126: 593600.
  • Bakken AK, Macduff J, Humphreys M, Raistrick N. 1996. A stay-green mutation of Lolium perenne L. affects NO3 uptake and translocation of N during prolonged N starvation. New Phytologist 135: 4150.
  • Barber J, Andersson B. 1992. Too much of a good thing: light can be both good and bad for photosynthesis. Trends in Biochemical Science 17: 6166.
  • Ben-David H, Nelson N, Gepstein S. 1983. Differential changes in the amount of protein complexes in the chloroplast membranes during senescence of oat and bean leaves. Plant Physiology 73: 507510.
  • Bennett J. 1981. Biosynthesis of the light-harvesting chlorophyll a/b protein. Polypeptide turnover in darkness. European Journal of Biochemistry 118: 6170.
  • Brandis A, Vainstein A, Goldschmidt E. 1996. Distribution of chlorophyllase among components of chloroplast membranes in Citrus sinensis organs. Plant Physiology and Biochemistry 34: 4954.
  • Brown J, Acker S, Duranton J. 1975. The difference in turnover rate between the chlorophyll a in the P700–chlorophyll a-protein and in the total chloroplast membranes. Biochemical and Biophysical Research Communications 62: 336341.
  • Butler RD, Simon EW. 1971. Ultrastructural aspects of senescence in plants. Advances in Gerontological Research 3: 73129.
  • Castelfranco PA, Beale SI. 1983. Chlorophyll biosynthesis: recent advances and areas of current interest. Annual Review of Plant Physiology 34: 241278.
  • Chiang H-L, Dice JF. 1988. Peptide sequences that target proteins for enhanced degradation during serum withdrawal. Journal of Biological Chemistry 263: 67976805.
  • Crafts-Brandner SJ, Salvucci ME, Egli DB. 1990. Changes in ribulose bisphosphate carboxylase/oxygenase and ribulose-5–phosphate kinase abundances and photosynthetic capacity during leaf senescence. Photosynthesis Research 23: 223230.
  • Curty C, Engel N. 1996. Chlorophyll catabolism. 9. Detection, isolation and structure elucidation of a chlorophyll a catabolite from autumnal senescent leaves of Cercidiphyllum japonicum. Phytochemistry 42: 15311536.
  • Dahlin C, Timko MP. 1994. Integration of nuclear-encoded proteins into pea thylakoids with different pigment contents. Physiologia Plantarum 91: 212218.
  • Davies TGE, Ougham HJ, Thomas H, Rogers LJ. 1989. Leaf development in Lolium temulentum: plastid membrane poly-peptides in relation to assembly of the photosynthetic apparatus and leaf growth. Physiologia Plantarum 75: 4754.
  • Davies TGE, Rogers LJ, Thomas BJ, Thomas H. 1990a. Leaf development in Lolium temulentum: formation of the photosynthetic apparatus in the presence of the porphyrin synthesis inhibitor gabaculine. Journal of Experimental Botany 41: 905917.
  • Davies TGE, Thomas H, Thomas BJ, Rogers LJ. 1990b. Leaf senescence in a non-yellowing mutant of Festuca pratensis: metabolism of cytochrome f. Plant Physiology 93: 588595.
  • Dreyfuss BW, Thornber JP. 1994. Organization of the light-harvesting complex of photosystem I and its assembly during plastid development. Plant Physiology 106: 841848.
  • Falbel TG, Staehelin LA. 1996. Partial blocks in the early steps of the chlorophyll synthesis pathway: a common feature of chlorophyll 6–deficient mutants. Physiologia Plantarum 97: 311320.
  • Feierabend J, Dehne S. 1996. Fate of the porphyrin cofactors during the light-dependent turnover of catalase and of the photosystem II reaction-center protein Dl in mature rye leaves. Planta 198: 413422.
  • Ferreira RB, Davies DD. 1986. Is protein degradation correlated with either charge or size of Lemna proteins Planta 169: 278288.
  • Flachmann R, Kúhlbrandt W. 1995. Accumulation of plant antenna complexes is regulated by post-transcriptional mechanisms in tobacco. Plant Cell 7: 149160.
  • Forreiter C, van Cleve B, Schmidt A, Apel K. 1990. Evidence for a general light-dependent negative control of Nadph-protochlorophyllide oxidoreductase in angiosperms. Planta 183: 126132.
  • Friedrich JW, Huffaker RC. 1980. Photosynthesis, leaf resistances, and ribulose-l,5–bisphosphate carboxylase degradation in senescing barley leaves. Plant Physiology 65: 11031107.
  • Gay AP, Thomas H. 1996. Leaf development in Lolium temulentum L.: photosynthesis in relation to growth and senescence. New Phytologist 130: 159168.
  • Ghosh S, Hudak KA, Dumbroff EB Thompson JE. 1994. Release of photosynthetic protein catabolites by blebbing from thylakoids. Plant Physiology 106: 15471553.
  • Gossauer A. 1994. Catabolism of tetrapyrroles. Chimia 48: 352361.
  • Green BR, Kühlbrandt W. 1995. Sequence conservation of light-harvesting and stress-response proteins in relation to the 3–dimensional molecular structure of LHC II. Photosynthesis Research 44: 139148.
  • Green BR, Pichersky E. 1994. Hypothesis for the evolution of 3–helix chl a/b and chl a/c light-harvesting antenna proteins from 2–helix and 4–helix ancestors. Photosynthesis Research 39: 149162.
  • Griffiths WT. 1978. Reconstitution of chlorophyllide formation by isolated etioplast membranes. Biochemical Journal 174: 681692.
  • Grimm B. Kloppstech K. 1987. The early light-inducible proteins of barley. European Journal of Biochemistry 167: 493499.
  • Guiamét JJ, Giannibelli MC. 1994. Inhibition of the degradation of chloroplast membranes during senescence in nuclear ‘stay green’ mutants of soybean. Physiologia Plantarum 91: 395402.
  • Guiamét JJ, Schwartz E, Pichersky E, Noodén LD. 1991. Characterization of cytoplasmic and nuclear mutations affecting chlorophyll and chlorophyll-binding proteins during senescence in soybean. Plant Physiology 96: 227231.
  • Hammp R, De Filippis LF. 1980. Plastid protease activity and prolamellar body transformation during greening. Plant Physiology 65: 663668.
  • Harrison MA, Nemson JA, Melis A. 1993. Assembly and composition of the chlorophyll a-b light-harvesting complex of barley (Hordeum vulgare L.): immunochemical analysis of chlorophyll &-less and chlorophyll 6–deficient mutants. Photosynthesis Research 38: 141151.
  • Hauck BD. 1996. Physiological and molecular studies of leaf senescence in Festuca pratensis. Ph.D. thesis, University of Wales.
  • Hendry GAF, Stobart AK. 1986. Chlorophyll turnover in greening barley. Phytochemistry 25: 27352737.
  • Hershko A, Ciechanover A. 1992. The ubiquitin system for protein degradation. Annual Review of Biochemistry 61: 761807.
  • Hidema J, Makino A, Kurita Y, Mae T, Ojima K. 1992. Changes in the levels of chlorophyll and light-harvesting chlorophyll a/b protein of PS II in rice leaves aged under different irradiances from full expansion through senescence. Plant and Cell Physiology 33: 12091214.
  • Hidema J, Makino A, Mae T, Ojima K. 1991. Photosynthetic characteristics of rice leaves aged under different irradiances from full expansion through senescence. Plant Physiology 97: 12871293.
  • Hilditch P, Thomas H, Rogers LJ. 1986. Two processes for the breakdown of the QB protein of chloroplasts. FEBS Letters 208: 313316.
  • Hilditch P, Thomas H, Thomas, BJ, Rogers LJ. 1989. Leaf senescence in a non-yellowing mutant of Festuca pratensis: proteins of Photosystem II. Planta 177: 265272.
  • Hinder B, Schellenberg M, Rodoni S, Ginsburg S, Vogt E, Martinoia E, Matile P, Hortensteiner S. 1996. How plants dispose of chlorophyll catabolites: directly energized uptake of tetrapyrrolic breakdown products into isolated vacuoles. Journal of Biological Chemistry 271: 2723327236.
  • Höfgen R, Axelsen K, Kannangara CG, Schiittke I, Pohlenz H-D, Willmitzer L, Grimm B, von Wettstein D. 1994. A visible marker for antisense mRNA expression in plants: inhibition of chlorophyll synthesis with glutamate-1 -semi-aldehyde aminotransferase antisense gene. Proceedings of the National Academy of Science, USA 91: 17261730.
  • Holloway PJ, Maclean DJ, Scott KJ. 1983. Rate-limiting steps of electron transport in chloroplasts during ontogeny and senescence of barley. Plant Physiology 72: 795801.
  • Holtdorf H, Reinbothe S, Reinbothe C, Bereza B, Apel K. 1995. Two routes of chlorophyllide synthesis that are differentially regulated by light in barley. Proceedings of the National Academy of Science, USA 92: 32543258.
  • Honda T, Tanaka A, Tsuji, H. 1994. Proteolytic activity in intact barley etioplasts-endoproteolysis of Nadph-proto-chlorophyllide oxidoreductase protein. Plant Science 97: 129135.
  • Hörtensteiner S, Vicentini F, Matile P. 1995. Chlorophyll breakdown in senescent cotyledons of rape. Brassica napus L.: enzymatic cleavage of phaeophorbide a in vitro. New Phytologist 129: 237246.
  • Hougen CL, Meller E, Gassman ML. 1982. Magnesium protoporphyrin monoester destruction by extracts of etiolated red kidney bean leaves. Plant Science Letters 24: 289294.
  • Hudson A, Carpenter R, Doyle S Coen ES. 1993. Olive: a key gene required for chlorophyll biosynthesis in Antirrhinum majus. Embo Journal 12: 37113719.
  • Hukmani P, Tripathy BC. 1994. Chlorophyll biosynthetic reactions during senescence of excised leaves of barley (Hordeum vulgare L. cv. IB-65) leaves. Plant Physiology 105: 12951300.
  • Humbeck K, Kloppstech K, Krupinska K. 1994. Expression of early light-inducible proteins in flag leaves of field-grown barley. Plant Physiology 105: 12171222.
  • Ignatov NV, Litvin FF. 1994. Photoinduced formation of pheophytin/chlorophyll-containing complexes during the greening of plant leaves. Photosynthesis Research 42: 2735.
  • Itoh H, Takaichi S, Tsuji H, Tanaka A. 1994. Properties of synthesis of chlorophyll a from chlorophyll b in cucumber etioplasts. Journal of Biological Chemistry 269: 2203422038.
  • Itoh H, Ohtsuka T, Tanaka A. 1996. Conversion of chlorophyll b to chlorophyll a via 7–hydroxymethyl chlorophyll. Journal of Biological Chemistry 271: 14751479.
  • Jacobs JM, Jacobs NJ. 1993. Porphyrin accumulation and export by isolated barley (Hordeum vulgare) plastids. Effect of diphenyl ether herbicides. Plant Physiology 101: 11811187.
  • Johanningmeier U. 1988. Possible control of transcript levels by chlorophyll precursors in Chlamydomonas. European Journal of Biochemistry 177: 417424.
  • Kar M, Streb P, Hertwig B, Feierabend J. 1993. Sensitivity to photodamage increases during senescence in excised leaves. Journal of Plant Physiology 141: 538544.
  • Kay SA, Griffiths WT. 1983. Light-induced breakdown of Nadph: protochlorophyllide oxidoreductase in vitro. Plant Physiology 72: 229236.
  • Kohorn BD, Auchincloss AH. 1991. Integration of a chlorophyll-binding protein into Escherichia coli membranes in the absence of chlorophyll. Journal of Biological Chemistry 266: 1204812052.
  • Kohorn BD, Tobin EM. 1987. Amino acid charge distribution influences the assembly of apoprotein into light-harvesting complex II. Journal of Biological Chemistry 262: 1289712899.
  • Kohorn BD, Yakir D. 1990. Movement of newly imported light-harvesting chlorophyll-binding protein from unstacked to stacked thylakoid membranes is not affected by light treatment or absence of amino-terminal threonines. Journal of Biological Chemistry 265: 21182123.
  • Krol M, Spangfort MD, Huner NPA, Oquist G, Gustafsson P. 1995. Chlorophyll a/b-binding proteins, pigment conversions, and early light-induced proteins in a chlorophyll Mess barley mutant. Plant Physiology 107: 873883.
  • Kruse E, Mock HP, Grimm B. 1995. Reduction of copro-porphyrinogen oxidase level by antisense RNA synthesis leads to deregulated gene expression of plastid proteins and affects the oxidative defense system. Embo Journal 14: 37123720.
  • Kühlbrandt W, Wang DN, Fujiyoshi Y. 1994. Atomic model of plant light-harvesting complex by electron crystallography. Nature 367: 614621.
  • Lamppa GK. 1988. The chlorophyll a/b-binding protein inserts into the thylakoid independent of its cognate transit pep tide. Journal of Biological Chemistry 263: 1499614999.
  • Langmeier M, Ginsburg S, Matile P. 1993. Chlorophyll breakdown in senescing leaves: demonstration of Mg-de-chelatase activity. Physiologia Plantarum 89: 347353.
  • Levy H, Tal T, Shaish A, Zamir A. 1993. cbr, an algal homolog of plant early light-induced proteins, is a putative zeaxanthin binding-protein. Journal of Biological Chemistry 268: 2089220899.
  • Li J, Goldschmidt-Clermont M, Timko MP. 1993. Chloroplast encoded chlB is required for light independent protochlorophyllide reductase activity in Chlamydomonas reinhardtii. Plant Cell 5: 18171829.
  • Lüthy B, Martinoia E, Matile P, Thomas H. 1984. Thylakoid-associated chlorophyll oxidase: distinction from lipoxygenase. Zeitschrift fur Pflanzenphysiologie 113: 423434.
  • Mae T, Thomas H, Gay AP, Makino A, Hidema J. 1993. Leaf development in Lolium temulentum: photosynthesis and photo-synthetic proteins in leaves senescing under different irra-diances. Plant and Cell Physiology 34: 391399.
  • Makino A, Mae T, Ohira K. 1984. Relation between nitrogen and ribulose-l,5–bisphosphate carboxylase in rice leaves from emergence through senescence. Plant and Cell Physiology 25: 429437.
  • Mapleston ER, Griffiths W. 1980. Light modulation of the activity of the protochlorophyllide oxidoreductase. Biochemical Journal 189: 125133.
  • Matile P, Hortensteiner S, Thomas H, Kräutler B. 1996. Chlorophyll breakdown in senescent leaves. Plant Physiology 112: 14031409.
  • Matile P, Kräutler B. 1995. Wie und warum bauen Pflanzen das Chlorophyll ab Chemie in unserer Zeit 29: 298306.
  • Matile P, Schellenberg M. 1996. The cleavage of phaeophorbide a is located in the envelope of barley gerontoplasts. Plant Physiology and Biochemistry 34: 5559.
  • Mattoo AK, Hoffman-Falk H, Marder JB, Edelman M. 1984. Regulation of protein metabolism: coupling of photosynthetic electron transport to in vivo degradation of the rapidly metabolized 32–kilodalton protein of the chloroplast membranes. Proceedings of the National Academy of Science, USA 81: 13801384.
  • Meyer G, Kloppstech K. 1984. A rapidly light-induced chloroplast protein with a high turnover coded for by pea nuclear DNA. European Journal of Biochemistry 138: 201207.
  • Mock H-P, Trainotti L, Kruse E, Grimm B. 1995. Isolation, sequencing and expression of cDNA sequences encoding uroporphyrinogen decarboxylase from tobacco and barley. Plant Molecular Biology 28: 245256.
  • Mösinger E, Batschauer A, Schäfer E Apel K. 1985. Phytochrome control of in vitro transcription of specific genes in isolated nuclei from barley (Hordeum vulgare). European Journal of Biochemistry 147: 137142.
  • Mühlecker W, Kräutler B. 1996. Breakdown of chlorophyll: constitution of nonfluorescing chlorophyll-catabolites from senescent cotyledons of the dicot rape. Plant Physiology and Biochemistry 34: 6175.
  • Mullet JE, Gamble-Klein P, Klein RR. 1990. Chlorophyll regulates accumulation of the plastid-encoded chlorophyll apoproteins CP43 and Dl by increasing apoprotein stability. Proceedings of the National Academy of Science, USA. 87: 40384042.
  • Ogawa T, Obata F, Shibata K. 1966. Two pigment-proteins in spinach chloroplasts. Biochimica et Biophysica Acta 112: 23234.
  • Ohtsuka T, Ito H, Tanaka A. 1997. Conversion of chlorophyll b to chlorophyll a and the assembly of chlorophyll with apoproteins by isolated chloroplasts. Plant Physiology 113: 137147.
  • Oliver RP, Griffiths WT. 1982. Pigment-protein complexes of illuminated etiolated leaves. Plant Physiology 70: 10191025.
  • Osorio D, Bossomaier TRJ. 1992. Human cone-pigment spectral sensitivities and the reflectances of natural surfaces. Biological Cybernetics 67: 217222.
  • Ougham HJ, Davies TGE. 1990. Leaf development in Lolium temulentum: gradients of RNA complement and plastid and non-plastid transcripts. Physiologia Plantarum 79: 331338.
  • Papiz MZ, Prince SM, Hawthornthwaite-Lawless AM, McDermott G, Freer AA, Isaacs NW, Cogdell RJ. 1996. A model for the photosynthetic apparatus of purple bacteria. Trends in Plant Science 1: 198206.
  • Paulsen H, Finkenzeller B, Kühlein N. 1993. Pigments induce folding of light-harvesting chlorophyll a/b-binding protein. European Journal of Biochemistry 215: 809816.
  • Payan LA. Cline K. 1991. A stromal protein factor maintains the solubility and insertion competence of an imported thylakoid membrane protein. Journal of Cell Biology 112: 603613.
  • Peisker C, Düggelin T, Rentsch D, Matile P. 1989. Phytol and the breakdown of chlorophyll in senescent leaves. Journal of Plant Physiology 135: 428432.
  • Peisker C, Thomas H, Keller F, Matile P. 1990. Radiolabelling of chlorophyll for studies on catabolism. Journal of Plant Physiology 136: 544549.
  • Perkins HJ, Roberts DWA. 1983. Chlorophyll turnover in monocotyledons and dicotyledons. Canadian Journal of Botanv 41: 221226.
  • Peter GF Thornber JP. 1991. Biochemical composition and organization of higher plant photosystem Ü light-harvesting pigment-proteins. Journal of Biological Chemistry 266: 1674516754.
  • Picher M, Grenier G, Purcell M, Proteau L, Beaumont G. 1993. Isolation and purification of intralamellar vesicles from Lemna minor L. chloroplasts. New Phytologist 123: 657663.
  • Plumley FG, Schmidt GW. 1987. Reconstitution of chlorophyll a/b light-harvesting complexes: xanthophyll-dependent assembly and energy transfer. Proceedings of the National Academy of Science, USA 83: 146150.
  • Pogson B, McDonald KA, Truong M, Britton G, DellaPenna D. 1996. Arabidopsis carotenoid mutants demonstrate that lutein is not essential for photosynthesis in higher plants. Plant Cell 8: 16271639.
  • Potter E, Kloppstech K. 1993. Effects of light stress on the expression of early light-inducible proteins in barley. European Journal of Biochemistry 214: 779786.
  • Raskin VI, Fleminger D, Marder JB. 1995. Integration and turnover of photosystem Ü pigment. In: MathisP, ed. Photosynthesis: from Light to Biosphere, Volume I. Amsterdam : Kluwer, 945948.
  • Reinbothe C, Apel K, Reinbothe S. 1995 a. A light-induced protease from barley plastids degrades Nadph:proto-chlorophyllide oxidoreductase complexed with chlorophyllide. Molecular Cell Biology 15: 62066212.
  • Reinbothe S, Reinbothe C, Holtdorf H, Apel K. 1995b. Two Nadph: protochlorophyllide oxidoreductases in barley: evidence for the selective disappearance of Pora during the light-induced greening of etiolated seedlings. Plant Cell 7: 19331940.
  • Reinbothe S, Reinbothe C, Lebedev N, Apel K. 1996. Pora and Porb, two light-dependent protochlorophyllide-reducing enzymes of angiosperm chlorophyll biosynthesis. Plant Cell 8: 763769.
  • Reinbothe S, Reinbothe C, Runge S, Apel K. 1995 c. Enzymatic product formation impairs both the chloroplast receptor-binding function as well as translocation competence of the Nadph-protochlorophyllide oxidoreductase, a nuclear-encoded plastid precursor protein. Journal of Cell Biology 129: 299308.
  • Reinbothe S, Runge S, Reinbothe C, van Cleve B, Apel K. 1995 d. Substrate-dependent transport of the Nadph protochlorophyllide oxidoreductase into plastids. Plant Cell 7: 161172.
  • Roberts DR, Thompson JE, Dumbroflf EB, Gepstein S, Mattoo AK. 1987. Differential changes in the synthesis and steady-state levels of thylakoid proteins during bean leaf senescence. Plant Molecular Biology 9: 343353.
  • Rodriguez MT, Gonzalez MP, Linares JM. 1987. Degradation of chlorophyll and chlorophyllase activity in senescing barley leaves. Journal of Plant Physiology 129: 369374.
  • Schellenberg M, Matile P, Thomas H. 1990. Breakdown of chlorophyll in chloroplasts of senescent barley leaves depends on ATP. Journal of Plant Physiology 136: 564568.
  • Schmidt HO. 1988. The structure and function of grana-free thylakoid membranes in gerontoplasts of senescent leaves of Viciafaba L. Zeitschrift fur Naturforschung 43c: 149154.
  • Schoch S, Brown J. 1986. The action of chlorophyllase on chlorophyll–protein complexes. Journal of Plant Physiology 126: 475482.
  • Schoch S, Rüdiger W, Luthy B, Matile P. 1984. 132hydroxychlorophyll a, the first product of the reaction of chlorophyll oxidase. Journal of Plant Physiology 115: 8589.
  • Schulz R, Steinmüller K, Klaas M, Forreiter C, Rasmussen S, Hiller C, Apel K. 1989. Nucleotide sequence of a cDNA coding for the NADPH-protochlorophyllide oxidoreductase (PCR) of barley (Hordeutn vulgare L.) and expression in Escherichia coli. Molecular and General Genetics 217: 355361.
  • Schümann V, Helfrich M, Schoch S, Rüdiger W. 1996. Reduction of the formyl group of zinc pheophorbide b in vitro and in vivo–a model for the chlorophyll b to chlorophyll a transformation. Zeitschrift für Naturforschung 51: 185194.
  • Schünmann PHD, Harrison J, Ougham HJ. 1994a. Slender barley, an extension growth mutant. Journal of Experimental Botany 45: 175317650.
  • Schünmann PHD, Ougham HJ. 1996. Identification of 3 cDNA clones expressed in the leaf extension zone and with altered patterns of expression in the slender mutant of barley–a tonoplast intrinsic protein, a putative structural protein and protochlorophyllide oxidoreductase. Plant Molecular Biology 31: 529537.
  • Schünmann PHD, Ougham HJ, Turk KS. 1994b. Leaf extension in the slender barley mutant: delineation of the zone of cell expansion and changes in translatable mRNA during leaf development. Plant, Cell and Environment 17: 13151322.
  • Shin W-S, Yamashita N, Hirose M. 1994. Multiple effects of haemin binding on protease susceptibility of bovine serum albumin and a novel isolation procedure for its large fragment. Biochemical Journal 304: 8186.
  • Shioi Y, Masuda T, Takamiya K, Shimokawa K. 1995. Breakdown of chlorophylls by soluble proteins extracted from leaves of Chenopodium album. Journal of Plant Physiology 145: 416421.
  • Shioi Y, Tomita N, Tsuchiya T, Takamiya K. 1996. Conversion of chlorophyllide to pheophorbide by Mg-dechelating substance in extracts of Chenopodium album. Plant Physiology and Biochemistry 34: 4147.
  • Sitte P. 1977. Chromoplasten-bunte Objekte der modernen Zellbiologie. Biologie in unserer Zeit 7: 6574.
  • Smith AG, Santana MA, Wallace-Cook AD, Roper JM, Labbe-Rois R. 1994. Isolation of a cDNA encoding ferro-chelatase from Arabidopsis thaliana by functional complementation of a yeast mutant. Journal of Biological Chemistry 269: 1340513413.
  • Spikes JD, Bommer JC. 1991. Chlorophyll and related pigments as photosensitizers in biology and medicine. In: ScheerH, ed. Chlorophylls. Boca Raton , FL , USA : CRC Press, 11811204.
  • Stobart AK, Hendry GAF. 1984. Chlorophyll turnover in greening wheat leaves. Phytochemistry 23: 2730.
  • Suzuki JY, Bauer CE. 1992. Light-independent chlorophyll biosynthesis: involvement of the chloroplast gene chlL (frxC). Plant Cell 4: 929940.
  • Tanaka Y, Tanaka A, Tsuji H. 1992. Stabilization of apoproteins of light-harvesting chlorophyll-a/b protein complex by feeding 5–aminolevulinic acid under intermittent illumination. Plant Physiology and Biochemistry 30: 365370.
  • Telfer A, Bishop SM, Phillips D, Barber J. 1994. Isolated photosynthetic reaction center of photosystem II as a sensitizer for the formation of singlet oxygen. Journal of Biological Chemistry 269: 1324413253.
  • Tevini M, Steinmüller D. 1985. Composition and function of plastoglobuli. II. Lipid composition of leaves and plastoglobuli during beech leaf senescence. Planta 163: 9196.
  • Thomas H. 1977. Ultrastructure, polypeptide composition and photochemical activity of chloroplasts during foliar senescence of a non-yellowing mutant genotype of Festuca pratensis. Planta 137: 5360.
  • Thomas H. 1994. Resource rejection by higher plants. In: MonteithJL, ScottRK, UnsworthMH, ed. Resource Capture by Crops. Nottingham : University Press, 375385.
  • Thomas H, Bortlik K, Rentsch D, Schellenberg M, Matile P. 1989. Catabolism of chlorophyll in vivo: significance of polar chlorophyll catabolites in a non-yellowing senescence mutant of Festuca pratensis. New Phytologist 111: 38.
  • Thomas H, Matile P. 1987. Photobleaching of chloroplast pigments in leaves of a non-yellowing mutant genotype of Festuca pratensis. Phytochemistry 27: 345348.
  • Thomas H, Schellenberg M, Vicentini F, Matile P. 1996. Gregor Mendel's green and yellow pea seeds. Botanica Ada 109: 34.
  • Thomas H, Smart CM. 1993. Crops that stay green. Annals of Applied Biology 123: 193219.
  • Thomson WW, Whatley JM. 1980. Development of nongreen plastids. Annual Review of Plant Physiology 31: 375394.
  • Thornber JP, Smith CA, Bailey JL. 1966. Partial characterization of two chlorophyll-protein complexes isolated from spinach-beet chloroplasts. Biochemical Journal 100: 1415.
  • Varshavsky A. 1992. The N-end rule. Cell 69: 725735.
  • Vicentini F, Hdrtensteiner S, Schellenberg M, Thomas H, Matile P. 1995. Chlorophyll breakdown in senescent leaves: identification of the biochemical lesion in a stay-green genotype of Festuca pratensis Huds. New Phytologist 129: 247252.
  • Vicentini F, Iten F, Matile P. 1995. Development of an assay for Mg-dechelatase of oilseed rape cotyledons using chlorophyllin as the substrate. Physiologia Plantarum 94: 5763.
  • Vierstra RD. 1996. Proteolysis in plants: mechanisms and functions. Plant Molecular Biology 32: 275302.
  • Vierstra RD, Sullivan ML. 1988. Hemin inhibits ubiquitin-dependent proteolysis in both a higher plant and yeast. Biochemistry 27: 32903295.
  • von Wettstein D, Gough S, Kannangara CG. 1995. Chlorophyll biosynthesis. Plant Celll: 10391057.
  • Waegemann K, Paulsen H, Soil J. 1990. Translocation of proteins into isolated chloroplasts requires cytosolic factors to obtain import competence. FEBS Letters 261: 8992.
  • Walker CJ, Griffiths, WT. 1986. Light independent proteolysis of protochlorophyllide reductase. In: AkoyunoglouG, SengerH, eds. Regulation of Chloroplast Differentiation. New York : Alan R Liss, 99104.
  • Walmsley J, Adamson H. 1995. Chlorophyll turnover in etiolated greening barley transferred to darkness–isotopic (1–C14 glutamic acid) evidence of dark chlorophyll synthesis in the absence of chlorophyll accumulation. Physiologia Plantarum 93: 435444.
  • White MJ, Green BR. 1987. Polypeptides belonging to each of the three major chlorophyll a + b protein complexes are present in a chlorophyll-6–less barley mutant. European Journal of Biochemistry 165: 531535.
  • White MJ, Green BR. 1988. Intermittent-light chloroplasts are not developmentally equivalent to chlorina f2 chloroplasts in barley. Photosynthesis Research 15: 195203.
  • Whyte BJ, Castelfranco PA. 1993. Breakdown of thylakoid pigments by soluble proteins of developing chloroplasts. Biochemical Journal 290: 361367.
  • Woolhouse HW, Jenkins GI. 1983. Physiological responses, metabolic changes and regulation during leaf senescence. In: DaleJE, MilthorpeFL, eds. The Growth and Functioning of Leaves. Cambridge : University Press, 449487.
  • Younis S, Ryberg M, Sundqvist C. 1995. Plastid development in germinating wheat (Triticum aestivum) is enhanced by gib-berellic acid and delayed by gabaculine. Physiologia Plantarum 95: 226346.
  • Ziegler R, Blaheta A, Guha N, Schonegge B. 1988. Enzymatic formation of phaeophorbide and pyrophaeophorbide during chlorophyll degradation in a mutant of Chlorellafusca Shihira et Kraus. Journal of Plant Physiology 132: 327332.