• Allium cepa;
  • Arbuscular mycorrhizas;
  • ATPase;
  • Helianthus annuus;
  • Microsomes


  1. Top of page
  3. References

We compared the plasma membrane, tonoplast and mitochondrial Mg-ATPase activities of microsomes isolated from mycorrhizal and non-mycorrhizal sunflower (Helianthus annuus L.) and onion (Allium cepa L.) roots during a time-course experiment (21–60 d). No significant difference was observed between the protein levels of root microsomes from mycorrhizal and non-mycorrhizal sunflower. However, the protein content of microsomes obtained from mycorrhizal onion roots increased when the symbiosis was well established (more than 50 % of root length colonized by the arbuscular mycorrhizal fungus). Kinetic studies revealed that vanadate-sensitive (plasma membrane-associated) ATPase activity of sunflower root microsomes increased with mycorrhizal colonization. However, the vanadate-sensitive ATPase activity of microsomes from mycorrhizal onion roots decreased compared with those from non-mycorrhizal controls. Increased activity of nitrate (tonoplast-associated) and azide (mitochondrial membrane-related)-sensitive ATPase activities was detected in extracts obtained from 45– and 60–d-old mycorrhizal onion plants. A slight increase in azide-sensitive ATPase activity was detected in microsomes of mycorrhizal sunflower. The existence of different physiological and biochemical strategies in sunflower and onion in relation to the establishment of this mutualistic symbiosis is discussed.


arbuscular mycorrhiza


arbuscular mycorrhizal fungi


bovine serum albumin


1,3 bis[tris(hydroxymethyl) methylamino] propane




ethylene glycol-bis (β-aminoethyl)-N,N′-tetraacetic acid




phenylmethansulfonyl fluoride




  1. Top of page
  3. References
  • Alexander T, Meier R, Toth R, Weber HC. 1988. Dynamics of arbuscule development and degeneration in mycorrhizas of Triticum aestivum L. and Avena saliva L. with reference to Zea mays L. New Phytologist 110: 363370.
  • Azcón-Aguilar C, Alba C, Montilla M, Barea JM. 1993. Isotopic (15N) evidence of the use of less available N forms by VA mycorrhizas. Symbiosis 15: 3948.
  • Bago B. 1994. Alteraciones fisiologicas en membranas de micorrizas arbusculares. Ph.D. thesis, Universidad de Granada, Spain .
  • Bago B, Donaire JP, Azcon-Aguilar C. 1996. Biochemical characterization of membranes in arbuscular mycorrhiza: fatty acids analysis. In: Azcon-AguilarC, BareaJM, eds. Mycorrhizas in Integrated Systems from Genes to Plant Development. Luxembourg : European Commission EUR 16728, 211214.
  • Baas R, van der Werf A, Lambers H. 1989. Root respiration and growth in Plantago major as affected by vesicular-arbuscular mycorrhizal infection. Plant Physiology 91: 227232.
  • Bonfante-Fasolo P. 1984. Anatomy and morphology of VA mycorrhizae. In: PowellCL, BajyarajDJ, eds. VA Mycorrhiza. Boca Raton , CA , USA : CRC Press, 533.
  • Bonfante P. 1994. Ultrastructural analysis reveals the complex interactions between root cells and arbuscular mycorrhizal fungi. In: GianinazziS. SchiieppH, eds. Impact of Arbuscular Mycorrhizas on Sustainable Agriculture and Natural Ecosystems. Basel : Birkhauser Verlag, 7387.
  • Bradford MM. 1976. A rapid and sensitive method for the quantification of micrograms of protein, utilizing the principle of protein-dye binding. Analytical Biochemistry 72: 248254.
  • Brundrett M. 1991. Mycorrhizas in natural ecosystems. Advances in Ecological Research 21: 171313.
  • Burgos PA, Donaire JP. 1996. Phospholipids, free sterols, fluidity and ATPase activity of plasma membrane-enriched vesicles from sunflower and jojoba roots. Plant Physiology and Biochemistry 34: 315324.
  • Cox G, Tinker PB. 1976. Translocation and transfer of nutrients on vesicular–arbuscular mycorrhizas. I. The arbuscule and phosphorus transfer: a quantitative ultrastructural study. New Phytologist 77: 371378.
  • De Michelis MI, Spanswick RM. 1986. H+-pumping driven by the vanadate-sensitive ATPase in membrane vesicles from corn roots. Plant Physiology 81: 542547.
  • Ferrol N, Belver A, Roldan M, Rodriguez-Rosales P, Donaire JP. 1993. Effects of boron on proton transport and membrane properties of sunflower (Helianthus annuus L.) cell microsomes. Plant Physiology 103: 763769.
  • Fieschi M, Alloatti G, Sacco S, Berta G. 1991. Membrane potential hyperpolarization in vesicular–arbuscular mycorrhizae of Allium porrum L.: a non-nutritional long-distance effect of the fungus. Protoplasma 168: 136140.
  • Galtier N, Belver A, Gibrat R, Grouzis JP, Rigaud J, Grignon C. 1988. Preparation of corn root plasmalemma with low Mg-ATPase latency and high electrogenic H+-pumping activity after partioning. Plant Physiology 87: 491497.
  • Gianinazzi-Pearson V, Smith SE, Gianinazzi S, Smith FA. 1991. Enzymatic studies on the metabolism of vesicular-arbuscular mycorrhizas. V. Is H+-ATPase a component of ATP-hydrolysing enzyme activities in plant-fungus interfaces New Phytologist 117: 6174.
  • Gianinazzi-Pearson V, Gollotte A, Leherminier J, Tisserant B, Franken P, Dumas-Gaudot E, Lemoine MC, Van Tuinen D, Gianinazzi S. 1995. Cellular and molecular approaches in the characterization of symbiotic events in functional arbuscular mycorrhizal associations. Canadian Journal of Botany, 73 (suppl.1): S526S532.
  • Gibrat R, Grouzis JP, Rigaud J, Galtier N, Grignon C. 1989. Electrostatic analysis of effects of ions on the inhibition of corn root plasma membrane Mg2+-ATPase by the bivalent ortho-vanadate. Biochemical and Biophysical Acta 979: 4652.
  • Giovannetti M, Mosse B. 1980. An evaluation of techniques for measuring vesicular-arbuscular mycorrhizal infection in roots. New Phytologist 84: 489500.
  • Gogstad GO, Krutnes MG. 1982. Measurement of protein in cell suspension using the Coomassie brilliant blue dye binding assay. Analytical Biochemistry 126: 355359.
  • Hewitt EJ. 1952. Sand and water culture methods used in the study of plant nutrition. Technical Communication 22: 547. Bucks., UK: Commonwealth Agricultural Bureau.
  • Koide RT, Li M. 1990. On host regulation of the vesicular-arbuscular mycorrhizal symbiosis. New Phytologist 114: 5974.
  • Marx C, Dexheimer J, Gianinazzi-Pearson V, Gianinazzi S. 1982. Enzymatic studies on the metabolism of vesicular-arbuscular mycorrhiza. IV. Ultracytoenzymological evidence (ATPase) for active transfer processes in the host-arbuscular interface. New Phytologist 90: 3743.
  • McArthur DAJ, Knowles NR. 1993. Influence of vesicular-arbuscular mycorrhizal fungi on the response of potato to phosphorus deficiency. Plant Physiology 101: 147160.
  • Michelet B, Boutry M. 1995. The plasma membrane H+-ATPase. A highly regulated enzyme with multiple physiological functions. Plant Physiology 108: 16.
  • Perotto S, Brewin N, Bonfante P. 1994. Colonization of pea roots by the mycorrhizal fungus Glomus versiforme and by Rhizobium bacteria: immunological comparison using monoclonal antibodies as probes for plant cell surface components. Molecular Plant-Microbe Interactions 7: 9198.
  • Phillips JM, Hayman DS. 1970. Improved procedures for clearing root and staining parasitic and vesicular-arbuscular fungi for rapid assessment of infection. Transactions of the British Mycological Society 55: 158161.
  • Reinhold L, Kaplan, A. 1984. Membrane transport of sugar and amino acids. Annual Review of Plant Physiology 35: 4582.
  • Serrano R. 1985. Plasma membrane ATPase of plants and fungi. Boca Raton , FL , USA : CRC Press.
  • Serrano R, Villalba JM. 1993. Bomba de protones de la membrana vegetal. Investigation y Ciencia, Januar. 1993, 6269.
  • Slayman CL. 1985. Proton chemistry and the ubiquity of proton pumps. Bioscience 35: 1617.
  • Smith SE, Smith FA. 1990. Structure and function of the interfaces in biotrophic symbioses as they relate to nutrient transport. New Phytologist 114: 138.
  • Sze H. 1985. H+-translocating ATPase: advances using membrane vesicles. Annual Review of Plant Physiology 36: 175208.
  • Toth R, Miller RM. 1984. Dynamics of arbuscule development and degeneration in a Zea mays mycorrhiza. American Journal of Botany 71: 449460.
  • Wyss P, Mellor RB, Wiemken A. 1990. Vesicular-arbuscular mycorrizas of wild type soybean and non-nodulating mutants with Glomus mosseae contain symbiosis-specific polypeptides (mycorrhizins) inmunologically cross-reactive with nodulins. Planta 182: 22.