Enhanced ozone-tolerance in wheat grown at an elevated CO2 concentration: ozone exclusion and detoxification


*To whom correspondence should be addressed.


Elevated [CO2] has been shown to protect photosynthesis and growth of wheat against moderately elevated [O3]. To investigate the role of ozone exclusion and detoxification in this protection, spring wheat (Triticum aestivum L. ev. Wembley) was grown from seed, in controlled-environment chambers, under reciprocal combinations of [CO2] at 350 or 700 μmol mol−1and [O3] peaking at < 5 or 60 nmol mol−1, respectively. Cumulative ozone dose to the mesophyll and antioxidant status were determined throughout flag leaf development. Catalase activity correlated with rates of photorespiration and declined in response to elevated [CO2] and/or [O3]. Superoxide dismutase activity was not significantly affected by either condition. Neither ascorbate nor glutathione content was enhanced by elevated [CO2]. In wheat, at moderately elevated [O3], our results show that stomatal exclusion plays a major role in the protective effect of elevated [CO2] against O3 damage.