SEARCH

SEARCH BY CITATION

references

  • Abrahamson WG, Anderson SC, McCrea KD. 1988. Effects of manipulation of plant carbon nutrient balance on tall goldenrod resistance to a gall making herbivore. Oecologia 77: 302306.
  • Abrahamson WG, McCrea KD. 1986, Nutrient and biomass allocation in Solidago altissima: effects of two stem gallmakers, fertilization, and ramet isolation. Oecologia 68: 174180.
  • Abrahamson WG, McCrea KD, Whitwell AJ, Vernieri LA. 1991. The role of phenolics in goldenrod ball gall resistance and formation. Biochemical Systematics and Ecology 19: 615622.
  • Allen SE. 1989. Chemical analysis of ecological materials. Oxford : Blackwell Scientific Publications.
  • Anon. 1982. Rovral Technical Bulletin. Brentwood : Rhône-Poulenc Agriculture.
  • Blanche KR, Westoby M. 1995. Gall-forming insect diversity is linked to soil fertility via host plant taxon. Ecology 76: 23342337.
  • Bronner R. 1992. The role of nutritive cells in the nutrition of cynipids and cecidomyids. In: ShorthouseJD, RohfritschO, eds. Biology of Insect-Induced Galls. Oxford : Oxford University Press, 118140.
  • Brundrett MC. 1991. Mycorrhizas in natural ecosystems. Advances in Ecological Research 21: 171313.
  • Bruyn L de. 1995. Plant stress and larval performance of a dipterous gall former. Oecologia 101: 461466.
  • Cooper KM, Losel D. 1978. Lipid physiology of vesiculararbuscular mycorrhiza. I. Composition of lipids in roots of onion, clover and ryegrass infected with Glomus mosseae. New Phytologist 80: 143151.
  • Crawley MJ. 1993. GLIM for Ecologists. Oxford : Blackwell Scientific Publications.
  • Dreger-Jauffret F, Shorthouse JD. 1992. Diversity of gallinducing insects and their galls. In: ShorthouseJD, RohfritschO, eds. Biology of Insect-Induced Gath. Oxford : Oxford University Press, 833.
  • Eber S, Brandl R. 1994. Ecological and genetic spatial patterns of Urophora cardui (Diptera: Tephritidae) as evidence for population structure and biogeographical processes. Journal of Animal Ecology 63: 187199.
  • Fernandes GW, Price PW. 1991. Comparisons of tropical and temperate galling species richness: the roles of environmental harshness and plant nutrient status. In: PricePW, LewinsohnTW, FernandesGW, BensonWW. eds. Plant-animal Interactions: Evolutionary Ecology in Tropical and Temperate Regions. New York : John Wiley, 91115.
  • Fernandes GW, Price PW. 1992. The adaptive significance of insect gall distribution: survivorship of species in xeric and mesic habitats. Oecologia 90: 1420.
  • Fitter, A. H. 1997. Nutrient acquisition. In: CrawleyMJ, ed. Plant Ecology. Oxford : Blackwell Science, 5172.
  • Forrest JMS. 1971. The growth of Aphis fabae as an indicator of the nutritional advantage of galling to the apple aphid Dysaphis devecta. Entomologia Experimentalis el Applicata 14: 477483.
  • Gange AC, Bower, E. 1997. Interactions between insects and mycorrhizal fungi. In: GangeAC, BrownVK, eds. Multitrophic Interactions in Terrestrial Systems. Oxford : Blackwell Science, 115132.
  • Gange AC, Brown VK, Sinclair GS. 1994. Reduction of black vine weevil larval growth by vesicular-arbuscular mycorrhizal infection. Entomologia Experimentalis et Applicata 70: 115119.
  • Gange AC, West HM. 1994. Interactions between arbuscular mycorrhizal fungi and foliar-feeding insects in Plantago lanceolata L. New Phytologist 128: 7987.
  • Harris P. 1991. Classical biocontrol of weeds-its definition, selection of effective agents, and administrative political problems. Canadian Entomologist 123: 827849.
  • Hartley SE. 1990. What are galls for? Tests of the nutrition hypothesis. In: JermyT, SzentesiA, DezsoG, Horvath, J. eds. Proceedings of the Seventh International Symposium on Insect-Plant I met actions, Budapest : Hungarian Academy of Sciences, 265274.
  • Hartley SE, Lawton JH. 1992. Host-plant manipulation by gall-inserts: a test of the nutrition hypothesis. Journal of Animal Ecology 61: 113119.
  • Inbar M, Eshel A, Wool D. 1995. Interspecific competition among phloem-feeding insects mediated by induced host-plant sinks. Ecology 76: 15061515.
  • Jakobsen I, Rosendahl L. 1990. Carbon flow into soil and external hyphae from roots of mycorrhizal cucumber plants. New Phytologist 115: 7783.
  • Johnson NC, Pfleger FL. 1992. Vesicular-arbuscular mycorrhizae and cultural stresses. Mycorrhizae in Sustainable Agriculture. ASA Special Publication no. 54, Madison : American Society of Agronomy.
  • Koske RE, Gemma JN. 1989. A modified procedure for staining roots to detect VA mycorrhizas. Mycological Research 92: 486505.
  • Lalonde RG, Shorthouse JD. 1984. Developmental morphology of the gall of Urophora cardui (Diptera, Tephritidae) in stems of Canada thistle (Cirsium arvense). Canadian Journal of Botany 62: 13721384.
  • Lalonde RG, Shorthouse JD. 1985. Growth and development of larvae and galls of Urophora cardui (Diptera, Tephritidae) on Cirsium arvense (Compositae). Oecologia 65: 161165.
  • McCrea KD, Abrahamson WG, Weiss AE. 1985. Goldenrod ball gall effects on Solidago altissima: 14C translocation and growth. Ecology 66: 19021907.
  • McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA. 1990. A new method which gives an objective measurement of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytologist 115: 495501.
  • Newsham KK, Fitter AH, Watkinson AR. 1995. Multi-functionality and biodiversity in arbuscular mycorrhizas. Trends in Ecology and Evolution 10: 407411.
  • Owensby CE, Coyne PI, Auen LM. 1993. Nitrogen and phosphorus dynamics of a tallgrass prairie ecosystem exposed to elevated carbon dioxide. Plant, Cell and Environment 16: 843850.
  • Peschken DP, Finnamore DB, Watson AK. 1982. Biocontrol of the weed Canada thistle (Cirsium arvense): releases and development of the gall fly Urophora cardui (Diptera: Tephritidae) in Canada. Canadian Entomologist 114: 349357.
  • Peschken DP, Harris P. 1975. Host specificity and biology of Urophora cardui (Diptera: Tephritidae) a biocontrol agent for Canada thistle (Cirsium arvense). Canadian Entomologist 107: 11011110.
  • Price PW, Fernandes GW, Waring GL. 1987. Adaptive nature of Insect galls. Environmental Entomology 16: 1524.
  • Rabin LB, Pacovsky RS. 1985. Reduced larva growth of two Lepidoptera (Noctuidae) on excised leaves of soybean infected with a mycorrhizal fungus. Journal of Economic Entomology 78: 13581363.
  • Read DJ. 1992. The mycorrhizal mycelium. In: AllenMF. ed. Mycorrhizal Functioning: an Integrative Plant-Fungal Process. New York : Chapman & Hall, 102133.
  • Shorthouse JD, Lalonde RG. 1988. Role of Urophora cardui (L.) (Diptera, Tephritidae) in growth and development of its gall on stems of Canada thistle. Canadian Entomologist 120: 639646.
  • Sokal RR, Rohlf FJ. 1995. Biometry. New York : W. H. Freeman & Company.
  • Tobar R, Azcón R, Barea JM. 1994. Improved nitrogen uptake and transport from 15N-labelled nitrate by external hyphae of arbuscular mycorrhiza under water stressed conditions. New Phytologist 126: 119122.
  • Trimble MB, Knowles NR. 1995. Influence of vesicular-arbuscular mycorrhizal fungi and phosphorus on growth, carbohydrate partitioning and mineral nutrition of greenhouse cucumber (Cucumis sativa L.) plants during establishment. Canadian Journal of Plant Science 75: 239250.
  • West HM. 1997. Interactions between arbuscular mycorrhizal fungi and foliar pathogens: consequences for host and pathogen. In: GangeAC, BrownVK, eds. Multitrophic Interactions in Terrestrial Systems. Oxford : Blackwell Science, 7989.
  • Wilson D. 1995. Fungal endophytes which invade insect galls-insect pathogens, benign saprophytes, or fungal inquilines. Oecologia 103: 255260.
  • Woodward FI. 1992. Predicting plant responses to global environmental change. New Phytologist 122: 239251.