SEARCH

SEARCH BY CITATION

References

  • Albrecht C, Burgess T, Dell B & Lapeyrie F. 1994. Chitinase and peroxidase activities are induced in eucalyptus roots according to aggressiveness of Australian ectomycorrhizal strains of Pisolithus sp. New Phytologist 127: 217222.
  • Bécard G, Doubs DD & Pfeffer PE. 1992. Extensive in vitro hyphal growth of vesicular–arbuscular mycorrhizal fungi in the presence of CO2 and flavonol. Applied and Environmental Microbiology 58: 821825.
  • Béguiristain T & Lapeyrie F. 1997. Host plant stimulates hypaphorine accumulation in Pisolithus tinctorius hyphae during ectomycorrhizal infection while excreted fungal hypaphorine controls root hair development. New Phytologist 136: 525532.
  • Binns AN, Chen RH, Wood HN & Lynn DG. 1987. Cell division promoting activity of naturally occurring dehydrodiconiferyl glucosides: Do cell wall components control cell division? Proceedings of the National Academy of Sciences, USA 84: 980984.
  • Cairney JWG, Chambers SM & Anderson IC. 1999. Pisolithus systematics – molecular methods provide fresh insights. Mycologist 13: 3135.
  • Chabot S, Bel-Rhlid R, Chenevert R & Piché Y. 1992. Hyphal growth promotion in vitro of the VA mycorrhizal fungus, Gigaspora margarita Becker & Hall, by the activity of structurally specific flavonoids compounds under enriched CO2 conditions. New Phytologist 122: 461467.
  • Chauhan NP, Fatma T & Mishra RK. 1992. Protection of wheat chloroplasts from lipid peroxidation and loss of photosynthetic pigments by quercetin under strong illumination. Journal of Plant Physiology 140: 409413.
  • Conde E, Cadahia E & Garcia-Vallejo MC. 1997. Low molecular weight polyphenol in leaves of Eucalyptus camaldulensis, Eucalyptus globulus and Eucalyptus rudis. Phytochemical Analysis 8: 196193.
  • Ditengou FA & Lapeyrie F. 2000. Hypaphorine from the ectomycorrhizal fungus Pisolithus tinctorius counteracts activities of indole-3-acetic acid and ethylene but not synthetic auxins in Eucalyptus seedlings. Molecular Plant Microbe Interaction 13: 151158.
  • Dixon RA, Dey PM & Lamb CJ. 1983. Phytoalexins: enzymology and molecular biology. Advances in Enzymology and Related Areas of Molecular Biology 55: 1136.
  • Fries N. 1988. Specific effects of diterpene resin acids on spore germination of ectomycorrhizal basidiomycetes. Experientia 44: 10271030.
  • Fries N, Serck-Hanssen K, Häll-Dimberg L & Theander O. 1987. Abietic acid, an activator of basidiospore germination in ectomycorrhizal species of the genus Suillus. Experimental Mycology 11: 360363.
  • Fulcher AF, Ranney TG, Burton JD, Walgenbach JF & Danehower DA. 1998. Role of foliar phenolics in host plant resistance of Malus taxa to adult Japanese beetles. Hortscience 33: 862865.
  • Funabiki R, Takeshita K, Miura Y, Shibasato M & Nagasawa T. 1999. Dietary (Suppl.) of G-rutin reduces oxidative damage in the rodent model. Journal of Agricultural and Food Chemistry 47: 10781082.
  • Gianinazzi-Pearson V, Branzanti B & Gianinazzi S. 1989. In vitro enhancement of spore germination and early hyphal growth of vesicular–arbuscular mycorrhizal fungus by host root exudates and plant flavonoids. Symbiosis 7: 243255.
  • Giovannetti M & Sbrana C. 1998. Meeting a non-host: the behaviour of AM fungi. Mycorrhiza 8: 123130.
  • Horan DP & Chilvers GA. 1990. Chemotropism: the key to ectomycorrhizal formation? New Phytologist 116: 451458.
  • Joubert P, Sangwan RS, Aouad MEA, Beaupere D & Sangwan-Norreel BS. 1995. Influence of phenolic compounds on Agrobacterium vir gene induction and onion gene transfer. Phytochemistry 40: 16231628.
  • Martin F, Delaruelle C & Hilbert JL. 1990. An improved ergosterol assay to estimate fungal biomass in ectomycorrhizas. Mycological Research 94: 10591064.
  • Martin F, Delaruelle C & Ivory M. 1998. Genetic variability in intergenic spacers of ribosomal DNA in Pisolithus isolates associated with pine, Eucalyptus and Afzelia in lowland Kenyan forests. New Phytologist 139: 341352.
  • Martin F, Lapeyrie F & Tagu D. 1997. Altered gene expression during ectomycorrhizal development. In: CarrollG, TudzynskiP, eds. The Mycota, Vol. 5 Part A. Berlin Heidelberg, Germany: Springer-Verlag, 223242.
  • Mateos JL, Conde E, Miranda T & Vicente C. 1991. Regulation mechanisms of phenolic production in the lichen Himantoemia lugubris, as deduced from analysis of metabolite accumulation. Plant Science 77: 109112.
  • Melin E & Rama Das VS. 1954. Influence of root-metabolites on the growth of tree mycorrhizal fungi. Physiologia Plantarum 7: 851858.
  • Metodiewa D, Kochman A & Karolczak S. 1997. Evidence of antiradical and antioxidant properties of four biologically active N,N-diethylaminoethyl ethers of flavonone oximes: a comparison with natural polyphenolic flavonoid (rutin) action. Biochemistry and. Molecular Biology International 41: 10671075.
  • Nair MG, Safir GR & Siquiera JO. 1991. Isolation and identification of vesicular-arbuscular mycorrhiza stimulatory compounds from clover (trifolium repens) roots. Applied and Environmental Microbiology 57: 434439.
  • Noroozi M, Angerson WJ & Lean MEJ. 1998. Effects of flavonoids and vitamin C on oxidative DNA damage to human. American Journal of Clinical Nutrition 67: 12101218.
  • Peters NK, Frost JW & Long SR. 1986. A plant flavone, luteoline, induces expression of Rhizobium melilotii nodulation genes. Science 233: 977980.
  • Peters NK & Verma DPS. 1990. Phenolic compounds as regulators of gene expression in plant–microbe interactions. Molecular Plant–Microbe Interactions 3: 48.
  • Phillips DA. 1993. Flavonoids: plant signal to soil microbes. In: StaffordHA, IbrahimPK, eds. Phenolics metabolism in plants. Recent advances in phytochemistry, Vol. 26. New York, USA: Plenum Press, 201231.
  • Poulin MJ, Bel-Rhlid R, Piché Y & Chenevert R. 1993. Flavonoids released by carrot (Daucus carrota) seedlings stimulate hyphal development of vesicular-arbuscular mycorrhizal fungi in presence of optimal CO2 enrichment. Journal of Chemical Ecology 19: 23172327.
  • Prinsen E, Chauvaux N, Schmidt J, John M, Wieneke U, De Greef J, Schell J & Van Onckelen H. 1991. Stimulation of indole-3-acetic acid production in Rhizobium by flavonoids. FEBS 282: 5355.
  • Staechel SE, Messens E, Van Montagu M & Zambryski PC. 1985. Identification of the signal molecules produced by wounded plant cells that activate T-DNA transfer in Agrobacterium tumefaciens. Nature 318: 624629.
  • Suriyapperuma SP & Koske RE. 1995. Attraction of germ tubes and germination of spores of the arbuscular mycorrhizal fungus Gigaspora gigantea in the presence of roots of maize exposed to different concentrations of phosphorus. Mycologia 87: 772778.
  • Tsai MS & Phillips AD. 1991. Flavonoids released naturally from alfalfa promote development of symbiotic Glomus spores in vitro. Applied and Environmental Microbiology 57: 14851488.