SEARCH

SEARCH BY CITATION

References

  • Berry SC, Varney GT, Flanagan LB. 1997. Leaf δ13C in Pinus resinosa trees and understory plants: Variation associated with light and CO2 gradients. Oecologia. 109: 499506.
  • Breda N, Granier A, Aussenac G. 1995. Effects of thinning on soil and tree water relations, transpiration and growths in an oak forest (Quercus petrea (Matt.) Liebl.). Tree Physiology 15: 295306.
  • Brugnoli E, Scartazza A, Lauteri M, Monteverdi MC, Máguas C. 1998. Carbon isotope discrimination in structural and non-structural carbohydrates in relation to productivity and adaptation to unfavourable conditions. In: GriffithsH, ed. Stable isotopes. Oxford, UK: BIOS Scientific Publishers, 133146.
  • Comstock J & Ehleringer J. 1993. Stomatal response to humidity in common bean (Phaseolus vulgaris): Implications for maximum transpiration rate, water-use efficiency and productivity. Australian Journal of Plant Physiology 20: 669691.
  • Damesin C, Rambal S, Joffre R. 1998. Seasonal drought and annual changes in leaf δ13C in two co-occurring Mediterranean oaks: relations to leaf growth and drought progression. Functional Ecology 12: 778785.
  • Dupouey JS, Leavitt SW, Choisnel E, Jourdain S. 1993. Modelling carbon isotope fractionation in tree rings based on effective evapotranspiration and soil water status. Plant, Cell & Environment 16: 939947.
  • Ehleringer JR & Cooper TA. 1986. Correlations between carbon isotope ratio and microhabitat in desert plants. Oecologia 76: 562566.
  • Ehleringer JR, Field CB, Lin Z-F, Kuo C-Y. 1986. Leaf carbon isotope and mineral composition in subtropical plants along an irradiance cline. Oecologia 70: 520526.
  • Ellenberg H. 1995. Die vegetation mitteleuropas. Stuttgart, Germany: Ulmer.
  • Enquete Kommission. 1994. Zum’schutz der erdatmosphäre des deutschen bundestags. Schutz der grünen erde. Klimaschutz durch umweltgerechte landwirtschaft und erhalt der wälder. Bonn, Germany: Economia-Verlag.
  • Fritsch J. 1998. Energiebilanz und verdunstung eines bewaldeten hangs im hochschwarzwald. Freiburg, Germany: Ber. Meteor. Inst., University of Freiburg.
  • Glavac V, Koenis H, Jochheim H, Ebben U. 1989. Mineralstoffe im Xylemsaft der Buche und ihre jahreszeitlichen Konzentrationsveränderungen entlang der Stammhöhe. Angew. Botanik 63: 471486.
  • Granier A. 1985. Une nouvelle méthode pour la mesure du flux de sève brute dans le tronc des arbres. Annales Sciences Forestiers 42: 8188.
  • Guehl J-M, Fort C, Ferhi A. 1995. Differential response of leaf conductance, carbon isotope discrimination and water-use efficiency to nitrogen deficiency in maritime pine and pedunculate oak plants. New Phytologist 131: 149157.
  • Högberg P, Johannisson C, Hällgren J-E. 1993. Studies of 13C in the foliage reveal interactions between nutrients and water in fertilization experiments. Plant and Soil 152: 207214.
  • Hultine KR & Marshall JD. 2000. Altitude trends in conifer leaf morphology and stable carbon isotope composition. Oecologia 123: 3240.
  • Israeli Y, Schwartz A, Plaut Z, Yakir D. 1996. Effects of light regime on δ13C, photosynthesis and yield of field-grown banana (Musa sp., Musaceae). Plant, Cell & Environment 19: 225230.
  • Jackson PC, Meinzer FC, Goldstein G, Holbrook NM, Cavelier J, Rada F. 1993. Environmental and physiological influences on carbon isotope composition of gap and understorey plants in a lowland tropical forest. In: EhleringerJR, HallAE, FarquharGD, eds. Stable isotopes and plant carbon-water relations. San Diego, CA, USA: Academic Press, 131140.
  • Keding S. 1984. Die räumliche verteilung der effektiven sonnenstrahlung im gerbirge – dargestellt am beispiel eines hydrologischen einzugsgebietes im Hochschwarzwald. PhD thesis. University of Freiburg.
  • Körner CH, Farquhar GD, Wong SC. 1991. Carbon isotope discrimination by plants follows latitudinal and altitudinal trends. Oecologia 88: 3040.
  • Korol RL, Kirschbaum MUF, Farquhar GD, Jeffreys M. 1999. Effects of water status and soil fertility on the C-isotope signature in Pinus radiata. Tree Physiology 19: 551562.
  • Köstner B, Biron P, Siegwolf R, Granier A. 1996. Estimates of Water Vapor Flux and Canopy Conductance of Scots Pine at the Tree Level Utilizing Different Xylem Sap Flow Methods. Theoretical and Applied Climatology 5: 105113.
  • Kozlowski TT & Pallardy SG. 1997. Physiology of Woody Plants, 2nd edn. San Diego, CA, USA: Academic Press.
  • Kreuzwieser J, Herschbach C, Stulen I, Wiersema P, Vaalburg W, Rennenberg H. 1997. Interactions of NH4+ and L-glutamate with NO3 transport processes of non-mycorrhizal Fagus sylvatica roots. Journal of Experimental Botany 48: 14311438.
  • Lauteri M, Scartazza A, Guido MC, Brugnoli E. 1997. Genetic variation in photosynthetic capacity, carbon isotope discrimination and mesophyll conductance in provenances of Castanea sativa adapted to different environments. Functional Ecology 11: 675683.
  • Leavitt SW & Long A. 1986. Stable-carbon isotope variability in tree foliage and wood. Ecology 67: 10021010.
  • Livingston NJ & Spittlehouse DL. 1996. Carbon isotope fractionation in tree ring early and late wood in relation to intra-season water balance. Plant, Cell & Environment 19: 768774.
  • Macfarlane C & Adams MA. 1998. δ13C of wood in growth-rings indicates cambial activity in drought-stressed trees of Eucalyptus globulus. Functional Ecology 12: 655664.
  • Macfarlane C, Warren CR, White DA, Adams MA. 1999. A rapid and simple method for processing wood to crude cellulose for analysis of stable carbon isotopes in tree rings. Tree Physiology. 19: 831835.
  • Matzarakis A, Mayer H, Schindler G, Fritsch J. 1999. Simulation des Wasserhaushalts eines Buchenwaldes mit dem forstlichen Wasserhaushaltsmodell WBS3. Bulletin Meteorological Institute University of Freiburg 5: 137146.
  • Millard P & Proe MF. 1993. Nitrogen uptake, partitioning and internal cycling in Picea sitchensis (Bong.) Carr. as influenced by nitrogen supply. New Phytologist 125: 113119.
  • Morecroft MD & Woodward FI. 1990. Experimental investigations of the environmental determination of δ13C at different altitudes. Journal of Experimental Botany 41: 13031308.
  • Oberdorfer E. 1992. Süddeutsche pflanzengesellschaften teil IV: wälder und gebüsche. Stuttgart, Germany: Fischer-Verlag.
  • Panek JA & Waring RH. 1997. Stable carbon isotopes as indicators of limitations to forest growth imposed by climate stress. Ecological Applications 7: 854863.
  • Pate JS & Arthur D. 1998. δ13C analysis of phloem sap carbon: novel means of evaluating seasonal water stress and interpreting carbon isotope signatures of foliage and trunk wood of Eucalyptus globulus. Oecologia 117: 301311.
  • Pate J, Shedley E, Arthur D, Adams MA. 1998. Spatial and temporal variations in phloem sap composition of plantation-grown Eucalyptus globulus. Oecologia 117: 312322.
  • Pearcy W & Pfitsch WA. 1994. The consequences of sunflecks for photosynthesis and growths of forest understory plants. In: SchulzeE-D, CaldwellMM, eds. Ecophysiology of photosynthesis. Ecological studies 100. Berlin, Germany: Springer, 433460.
  • Rennenberg H, Schneider S, Weber P. 1996. Analysis of uptake and allocation of nitrogen and sulphur compounds by trees in the field. Journal of Experimental Botany 47: 14911498.
  • Sass U & Eckstein D. 1995. The variability of vessel size in beech (Fagus sylvatica L.) and its ecophysiological interpretation. Trees, Structure and Function 9: 247252.
  • Saurer M & Siegenthaler U. 1989. 13C/12C isotope ratios in trees are sensitive to relative humidity. Dendrochronology 7: 913.
  • Saurer M, Siegenthaler U, Schweingruber F. 1995. The climate–carbon isotope relationship in tree rings and the significance of site conditions. Tellus 47: 320330.
  • Schleser GH. 1990. Investigations of the δ13C pattern in leaves of Fagus sylvatica L. Journal of Experimental Botany 41: 565572.
  • Schleser GH. 1992. δ13C pattern in a forest tree as an indicator of carbon transfer in trees. Ecology 73: 19221925.
  • Schmidt J. 1990. Überlegungen zur Erfassung und Beschreibung von Wachstumsgängen am Beispiel der Durchmesserzuwachsentwicklung der letzten Jahrzehnte von Fichtenbeständen in Bayern unter besonderer Berücksichtigung witterungsbedingter Zuwachsreaktionen. Forstliche Forschungsberichte der Universität München, Nr. 104.
  • Schneider S, Geßler A, Weber PV, Sengbusch D, Hanemann U, Rennenberg H. 1996. Soluble N compounds in trees exposed to high loads of N: a comparison of spruce (Picea abies) and beech (Fagus sylvatica) grown under field conditions. New Phytologist 134: 103114.
  • Stewart GR, Turnbull MH, Schmidt S, Erskine PD. 1995. 13C natural abundance in plant communities along a rainfall gradient: a biological integrator of water availability. Australian Journal of Plant Physiology 22: 5155.
  • Walcroft AS, Silvester WB, Grace JC, Carson SD, Waring RH. 1996. Effects of branch length on carbon isotope discrimination in Pinus radiata. Tree Physiology 16: 281286.
  • Walcroft AS, Silvester WB, Whitehead D, Kelliher FM. 1997. Seasonal changes in stable carbon isotope ratios within annual rings of Pinus radiata reflect environmental regulation of growth processes. Australian Journal of Plant Physiology 24: 5768.
  • Warren CR & Adams MA. 2000. Water availability and branch length determine δ13C in foliage of Pinus pinaster. Tree Physiology 20: 637643.
  • Warren CR, McGrath J, Adams MA. 2001. Water availability and carbon isotope discrimination in conifers. Oecologia. (In press.)
  • Yoneyama T, Handley LL, Scrimgeour CM, Fisher DB, Raven JA. 1997. Variations of the natural abundances of nitrogen and carbon isotopes in Triticum aestivum, with special reference to phloem and xylem exudates. New Phytologist 137: 205213.
  • Zimmerman MH & Ziegler H. 1975. Appendix III: list of sugars and sugar alcohols in sieve-tube exudates. In: ZimmermanMH, MilburnJA, eds. Encyclopedia of plant physiology. New series, Vol. 1, Transport in plants. I. Phloem transport. Berlin, Germany: Springer, 480503.