SEARCH

SEARCH BY CITATION

References

  • Bode K, Helas G, Kesselmeier J. 1997. Biogenic contribution to atmospheric organic acids. In: HelasG, SlaninaJ, SteinbrecherR, eds. Biogenic volatile organic compounds in the atmosphere. Amsterdam, The Netherlands: SPB Academic Publishing, 157170.
  • Brasseur GP, Chatfield RB. 1991. The fate of biogenic trace gases in the atmosphere. In: SharkeyTD, HollandB, MooneyHA, eds. Trace gas emissions by plants. New York, USA: Academic Press, 128.
  • Constable JVH, Litvak ME, Greenberg JP, Monson RK. 1999. Monoterpene emission from coniferous trees in response to elevated CO2 concentration and climate warming. Global Change Biology 154: 255267.
  • Fehsenfeld F, Calvert J, Fall R, Goldan P, Guenther AB, Hewitt CN, Lamb B, Liu S, Trainer M, Westberg H, Zimmerman P. 1992. Emissions of volatile organic compounds from vegetation and the implications for atmospheric chemistry. Global Geobiochemical Cycles 6: 389430.
  • Fliegmann J, Sandermann H Jr. 1997. Maize glutathione-dependent formaldehyde dehydrogenase cDNA: a novel plant gene of detoxification. Plant Molecular Biology 34: 843854.
  • Van Gardingen PR, Grace J, Harkness DD, Miglietta F, Raschi A. 1995. Carbon dioxide emissions at an Italian mineral spring: measurement of average CO2 concentration and air temperature. Agriculture and Forest Meteorology 73: 1727.
  • Giese M, Bauer-Doranth U, Langebartels C, Sandermann H. 1994. Detoxification of formaldehyde by the spider plant (Chlorophytum comosum L.) and by soybean (Glycine max L.) cell-suspension cultures. Plant Physiology 104: 13011309.
  • Guenther AB, Hewitt CN, Erickson D, Fall R, Geron C, Graedel T, Harley PC, Klinger L, Lerdau M, McKay WA, Pierce T, Scholes B, Steinbrecher R, Tallamraju R, Taylor J, Zimmerman P. 1995. A global model of natural volatile organic compound emissions. Journal of Geophysical Research 100: 8   873 – 8   878   892.
  • Guenther AB, Zimmerman PR, Wildermuth M. 1994. Natural volatile organic compound emission rates for U.S. woodland landscapes. Atmospheric Environment 28: 11971210.
  • Hahn J, Steinbrecher R, Slemr J. 1991. Study of the emission of low molecular-weight organic compounds by various plants. In: BorrellP, BorrellPM, SeilerW, eds. EUROTRAC Annual Report, Part 4. The Hague, The Netherlands: SPB Academic Publisher, 230235.
  • Halliwell B, Gutteridge JMC. 1989. Free radicals in biology and medicine, 2nd edn. Oxford, UK: Oxford University Press.
  • Harriman RW, Tieman DM, Hanada AK. 1991. Molecular cloning of tomato pectin methylesterase gene and its expression in Rutgers, ripening inhibitor, non-ripening, and never ripe tomato fruits. Plant Physiology 97: 8087.
  • Holzinger R, Sandoval-Soto L, Rottenberger S, Crutzen PJ, Kesselemeier J. 2000. Emissions of volatile organic compounds from Quercus ilex L. measured by Proton Transfer Reaction Mass spectrometry (PTR-MS) under different environmental conditions. Journal of Geophysical Research 105: 20   573 – 20   520   579.
  • Houghton JT. 1997. Global warming: the complete briefing, 2nd edn. Cambridge, UK: Cambridge University Press.
  • Hourton-Cabassa C, Ambard-Bretteville F, Moreau F, Davy de Virville J, Rémy R, Colas des Francs C. 1998. Stress induction of mitochondrial formate dehydrogenase in potato leaves. Plant Physiology 116: 627635.
  • Janson R, De Serves C. 2001. Acetone and monoterpene emissions from the boreal forest in northern Europe. Atmospheric Environment 35: 46294637.
  • Janson R, De Serves C, Romero R. 1999. Emission of isoprene and carbonyl compounds from a boreal forest and wetland in Sweden. Agricultural and Forest Meteorology 98–99: 671681.
  • Kesselmeier J. 2001. Exchange of short-chain oxygenated volatile organic compounds (VOCs) between plants and the atmosphere: a compilation of field and laboratory studies. Journal of Atmospheric Chemistry 39: 219233.
  • Kesselmeier J, Bode K, Hofmann U, Müller H, Schäfer L, Wolf A, Ciccioli P, Brancaleoni E, Cecinato A, Frattoni M, Foster P, Ferrari C, Jacob V, Fugit JL, Dutaur L, Simon V, Torres L. 1997. Emission of short chained organic acids, aldehydes and monoterpenes from Quercus ilex L. and Pinus pinea L. in relation to physiological activities, carbon budget and emission algorithms. Atmospheric Environment 31: 119133.
  • Kesselmeier J, Staudt M. 1999. Biogenic volatile organic compounds (VOC): an overview on emission, physiology and ecology. Journal of Atmospheric Chemistry 33: 2388.
  • Kimmerer TW, Kozlowski TT. 1982. Ethylene, ethane, acetaldehyde, and ethanol production by plants under stress. Plant Physiology 69: 840847.
  • Körner C, Miglietta F. 1994. Long term effects of naturally elevated CO2 on Mediterranean grassland and forest trees. Oecologia 99: 334351.
  • Kotzias D, Konidari C, Sparta C. 1997. Volatile carbonyl compounds of biogenic origin – Emission and concentration in the atmosphere. In: HelasG, SlaninaJ, SteinbrecherR, eds. Biogenic volatile organic carbon compounds in the atmosphere. Amsterdam, The Netherlands: SPB Academic Publishing, 6778.
  • Kreuzwieser J, Harren FJM, Laarhoven L-J, Boamfa I, Te Lintel-Hekkert S, Scheerer U, Hüglin C, Rennenberg H. 2001. Acetaldehyde emission by the leaves of trees-correlation with physiological and environmental parameters. Physiologia Plantarum 113: 4149.
  • Kreuzwieser J, Kühnemann F, Martis A, Rennenberg H, Urban W. 2000. Diurnal pattern of acetaldehyde emission by flooded poplar trees. Physiologia Plantarum 108: 7986.
  • Kreuzwieser J, Scheerer U, Rennenberg H. 1999a. Metabolic origin of acetaldehyde emitted by poplar (Populus tremula × P. alba) trees. Journal of Experimental Botany 50: 757765.
  • Kreuzwieser J, Schnitzler J-P, Steinbrecher R. 1999b. Biosynthesis of organic compounds emitted by plants. Plant Biology 1: 149159.
  • Loreto F, Ciccioli P, Cecinato A, Brancaleoni E, Frattoni M, Tricoli D. 1996. Influence of environmental factors and air composition on the emission of α-pinene from Quercus ilex leaves. Plant Physiology 110: 267275.
  • Loreto F, Fischbach RJ, Schnitzler J-P, Ciccioli P, Brancaleoni E, Calfapietra C, Seufert G. 2001. Monoterpene emission and monoterpene synthase activities in the Mediterranean evergreen oak Quercus ilex L. grown at elevated CO2 concentrations. Global Change Biology 7: 709717.
  • Loreto F, Sharkey TD. 1990. A gas exchange study of photosynthesis and isoprene emission in red oak (Quercus rubra L.). Planta 182: 523531.
  • MacDonald RC, Kimmerer TW. 1991. Ethanol in the stems of trees. Physiologia Plantarum 82: 582588.
  • Marabottini R, Schraml C, Paolacci AR, Sorgona A, Raschi A, Rennenberg H, Badiani M. 2001. Foliar antioxidant status of adult Mediterranean oak species (Quercus ilex L. and Q. pubescens Willd.) exposed to permanent CO2-enrichment and to seasonal water stress. Environmental Pollution 113: 413423.
  • Miglietta F, Raschi A, Resti R, Badiani M. 1993. Growth and onto-morphogenesis of soybean (Glycine max Merril) in an open, naturally CO2 enriched environment. Plant, Cell & Environment 16: 909918.
  • Monson RK, Fall R. 1989. Isoprene emission from aspen leaves. Plant Physiology 90: 267274.
  • Nemecek-Marshall M, MacDonald RC, Franzen JJ, Wojciechowski CL, Fall R. 1995. Methanol emission from leaves. Plant Physiology 108: 13591368.
  • Obendorf RL, Koch JL, Gorecki RJ, Amable RA, Aveni MT. 1990. Methanol accumulation in maturing seeds. Journal of Experimental Botany 41: 489495.
  • Polle A, McKee I, Blaschke L. 2001. Altered physiological and growth responses to elevated [CO2] in offspring from holm oak (Quercus ilex L.) mother trees with lifetime exposure to naturally elevated [CO2]. Plant, Cell & Environment 24: 10751083.
  • Sakaki T. 1998. Photochemical oxidants: toxicity. In: De KokLJ, StulenI, eds. Responses of plant metabolism to air pollution and global change. Leiden, The Netherlands: Backhuys Publishers, 117129.
  • Schulte M, Raiesi FG, Papke H, Butterbach-Bahl K, Van Breemen N, Rennenberg H. 1999. CO2 concentration and atmospheric trace gas mixing ratio around natural CO2 vents in different Mediterranean forests in Central Italy. In: RaschiA, VaccariFP, MigliettaF, eds. Ecosystem responses to CO2: the MAPLE (microevolutionary adaptation of plants to elevated CO2) project results . Research Directorate-General. EUR 19100. Brussels, Belgium: European Commission, 168188.
  • Schwanz P, Polle A. 1998. Antioxidative systems, pigment and protein content in leaves of adult mediterranean oak species (Quercus pubescens and Q. ilex) with lifetime exposure to elevated CO2. New Phytologist 140: 411423.
  • Shao M, Czapiewski KV, Heiden AC, Kobel K, Komenda M, Koppmann R, Wildt J. 2001. Volatile organic compound emissions from Scots pine: Mechanisms and description by algorithms. Journal of Geophysical Research – Atmosphere 106: 20   483 – 20   420   491.
  • Sharkey TD, Loreto F, Delwiche CF. 1991. High carbon dioxide and sun/ shade effects on isoprene emission from oak and aspen tree leaves. Plant, Cell & Environment 14: 333338.
  • Simpson D, Winiwarter W, Börjesson G, Cinderby S, Ferreiro A, Guenther A, Hewitt CN, Janson R, Aslam M, Khalil K, Owen S, Pierce TE, Puxbaum H, Shearer M, Skiba U, Steinbrecher R, Tarrason L, Öquist MG. 1999. Inventorying emissions from nature in Europe. Journal of Geophysical Research 104: 8   113 – 8   118   152.
  • Staudt M, Joffre R, Rambal S, Kesselmeier J. 2001. Effect of elevated CO2 on monoterpene emission of young Quercus iles trees and its relation to structural and ecophysiological parameters. Tree Physiology 21: 437445.
  • Thompson AM. 1992. The oxidising capacity of the Earth’s atmosphere: probable past and future changes. Science 256: 11571165.
  • Tognetti R, Johnson JD, Michelozzi M, Raschi A. 1998. Response of foliar metabolism in mature trees of Quercus pubescens and Quercus ilex to long-term, elevated CO2. Environmental and Experimental Botany 39: 233245.