SEARCH

SEARCH BY CITATION

Keywords:

  • genetic diversity;
  • Cenococcum geophilum;
  • ectomycorrhiza;
  • sclerotia;
  • RAPD

Summary

• The asexual ectomycorrhizal fungus Cenococcum geophilum, known for its wide host and habitat range, has been suggested to provide isolate-dependant drought protection to fine roots. However, little is known about its genetic structure at the fine scale.

• Genetic diversity and population structure of C. geophilum at the regional and stand scales was surveyed in five beech (Fagus silvatica) forests in northeastern France. The stands were selected for their contrasting climatic and edaphic features to assess the effect of environmental factors on population structure.

• The genetic diversity of C. geophilum was estimated using RAPD, PCR/RFLP of the rDNA internal transcribed spacer (ITS) and PCR/RFLP and sequencing of an anonymous sequence characterized amplified region (SCAR) on ectomycorrhizas and sclerotia-derived mycelial cultures.

• A high degree of genetic diversity was observed between and within beech stands in C. geophilum populations. These results suggest the occurrence of a high rate of mitotic or meiotic recombination and an effect of stand features on population structure.