SEARCH

SEARCH BY CITATION

References

  • Abbott LK, Robson AD. 1985. The effect of soil pH on the formation of VA mycorrhizas by two species of Glomus. Australian Journal of Soil Research 23: 253261.
  • Ames RN, Reid CPP, Ingham ER. 1984. Rhizosphere bacterial population responses to root colonization by a vesicular–arbuscular mycorrhizal fungus. New Phytologist 96: 555563.
  • Van Aarle IM, Olsson PA, Söderström B. 2001. Microscopic detection of phosphatase activity of saprophytic and arbuscular mycorrhizal fungi using a fluorogenic substrate. Mycologia 93: 1724.
  • Bago B, Pfeffer PE, Shachar-Hill Y. 2000. Carbon metabolism and transport in arbuscular mycorrhizas. Plant Physiology 124: 949 957.
  • Boddington CL, Dodd JC. 1998. A comparison of the development and metabolic activity of mycorrhizas formed by arbuscular mycorrhizal fungi from different genera on two tropical forage legumes. Mycorrhiza 8: 149157.
  • Bolan NS. 1991. A critical review on the role of mycorrhizal fungi in the uptake of phosphorus by plants. Plant and Soil 134: 189207.
  • Clark RB, Zeto SK. 1996a. Growth and root colonization of mycorrhizal maize grown on acid and alkaline soil. Soil Biology and Biochemistry 28: 15051511.
  • Clark RB, Zeto SK. 1996b. Mineral acquisition by mycorrhizal maize grown on acid and alkaline soil. Soil Biology and Biochemistry 28: 14951503.
  • Ezawa T, Smith SE, Smith FA. 2001. Differentiation of polyphosphate metabolism between the extra- and intraradical hyphae of arbuscular mycorrhizal fungi. New Phytologist 149: 555563.
  • Frostegård Å, Bååth E. 1996. The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biology and Fertility of Soils 22: 5965.
  • Frostegård Å, Tunlid A, Bååth E. 1993. Phospholipid fatty acid composition, biomass and activity of microbial communities from two soil types experimentally exposed to different heavy metals. Applied and Environmental Microbiology 59: 36053617.
  • Graham JH, Hodge NC, Morton JB. 1995. Fatty acid methyl ester profiles for characterization of Glomalean fungi and their endomycorrhizae. Applied and Environmental Microbiology 61: 5864.
  • Haynes RJ. 1990. Active ion uptake and maintenance of cation-anion balance: a critical examination of their role in regulating rhizosphere pH. Plant and Soil 126: 247264.
  • Van Der Heijden MGA, Boller T, Wiemken A, Sanders IR. 1998a. Different arbuscular mycorrhizal fungal species are potential determinants of plant community structure. Ecology 79: 20822091.
  • Van Der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR. 1998b. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396: 6972.
  • Jakobsen I, Nielsen NE. 1983. Vesicular–arbuscular mycorrhiza in field-grown crops. I. Mycorrhizal infection in cereals and peas at various times and soil depths. New Phytologist 93: 401413.
  • Jakobsen I, Abbott LK, Robson AD. 1992a. External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum L. 1. Spread of hyphae and phosphorus inflow into roots. New Phytologist 120: 371380.
  • Jakobsen I, Abbott LK, Robson AD. 1992b. External hyphae of vesicular–arbuscular mycorrhizal fungi associated with Trifolium subterraneum L. 2. Hyphal transport of 32P over defined distances. New Phytologist 120: 509516.
  • Johansen A, Finlay RD, Olsson PA. 1996. Nitrogen metabolism of external hyphae of the arbuscular mycorrhizal fungus Glomus intraradices. New Phytologist 133: 705712.
  • Joner EJ, Jakobsen I. 1994. Contribution by two arbuscular mycorrhizal fungi to P uptake by cucumber (Cucumis sativus L.) from 32P-labelled organic matter during mineralization in soil. Plant and Soil 163: 203209.
  • Joner EJ, Jakobsen I. 1995. Growth and extracellular phosphatase activity of arbuscular mycorrhizal hyphae as influenced by soil organic matter. Soil Biology and Biochemistry 27: 11531159.
  • Joner EJ, Johansen A. 2000. Phosphatase activity of external hyphae of two arbuscular mycorrhizal fungi. Mycological Research 104: 8186.
  • Joner EJ, Magid J, Gahoonia TS, Jakobsen I. 1995. P depletion and activity of phosphatases in the rhizosphere of mycorrhizal and non-mycorrhizal cucumber (Cucumis sativus L.). Soil Biology and Biochemistry 27: 11451151.
  • Joner EJ, Van Aarle IM, Vosatka M. 2000. Phosphatase activity of extra-radical arbuscular mycorrhizal hyphae: a review. Plant and Soil 226: 199210.
  • Malcová R, Vosátka M, Albrechtová J. 1999. Influence of arbuscular mycorrhizal fungi and simulated acid rain on the growth and coexistence of the grasses Calamagrostis villosa and Deschampsia flexuosa. Plant and Soil 207: 4557.
  • Marschner H. 1995. Mineral nutrition of higher plants , 2nd edn. London, UK: Academic Press Ltd.
  • McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA. 1990. A new method which gives an objective measure of colonization of roots by vesicular–arbuscular mycorrhizal fungi. New Phytologist 115: 495501.
  • Medeiros CAB, Clark RB, Ellis JR. 1993. Effects of MES [2 (N-Morpholino)-ethanesulfonic acid] and pH on mineral nutrient uptake by mycorrhizal and nonmycorrhizal maize. Journal of Plant Nutrition 16: 22552272.
  • Medeiros CAB, Clark RB, Ellis JR. 1994. Growth and nutrient uptake of sorghum cultivated with vesicular–arbuscular mycorrhiza isolates at varying pH. Mycorrhiza 4: 185191.
  • Mosse B. 1959. Observation on the extra-matrical mycelium of a vesicular-arbuscular endophyte. Transactions of the British Mycological Society 42: 439448.
  • Olsson PA. 1999. Signature fatty acids provide tools for determination of distribution and interactions of mycorrhizal fungi in soil. FEMS Microbiology Ecology 29: 303310.
  • Olsson PA, Johansen A. 2000. Lipid and fatty acid composition of hyphae and spores of arbuscular mycorrhizal fungi at different growth stages. Mycological Research 104: 429434.
  • Olsson PA, Bååth E, Jakobsen I, Söderström B. 1996. Soil bacteria respond to presence of roots but not to arbuscular mycorrhizal mycelium. Soil Biology and Biochemistry 28: 463470.
  • Olsson PA, Bååth E, Jakobsen I. 1997. Phosphorus effects on the mycelium and storage structures of an arbuscular mycorrhizal fungus as studied in the soil and roots by analysis of fatty acid signatures. Applied and Environmental Microbiology 63: 35313538.
  • Olsson PA, Francis R, Read DJ, Söderström B. 1998. Growth of arbuscular mycorrhizal mycelium in calcareous dune sand and its interaction with other soil microorganisms as estimated by measurement of specific fatty acids. Plant and Soil 201: 916.
  • Pearson JN, Jakobsen I. 1993. Symbiotic exchange of carbon and phosphorus between cucumber and three arbuscular mycorrhizal fungi. New Phytologist 124: 481488.
  • Phillips JM, Hayman DS. 1970. Improved procedures for clearing roots and staining parasitic and vesicular–arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society 55: 158161.
  • Porter WM, Robson AD, Abbott LK. 1987. Field survey of the distribution of vesicular–arbuscular mycorrhizal fungi in relation to soil pH. Journal of Applied Ecology 24: 659662.
  • Posta K, Marschner H, Römheld V. 1994. Manganese reduction in the rhizosphere of mycorrhizal and nonmycorrhizal maize. Mycorrhiza 5: 119124.
  • Ravnskov S, Jakobsen I. 1995. Functional compatibility in arbuscular mycorrhizas measured as hyphal P transport to the plant. New Phytologist 129: 611618.
  • Ravnskov S, Jakobsen I. 1999. Effects of Pseudomonas fluorescens DF57 on growth and P uptake of two arbuscular mycorrhizal fungi in symbiosis with cucumber. Mycorrhiza 8: 329334.
  • Ravnskov S, Larsen J, Olsson PA, Jakobsen I. 1999. Effects of various organic compounds on growth and phosphorus uptake of an arbuscular mycorrhizal fungus. New Phytologist 141: 517524.
  • Siqueira JO, Hubbell DH, Mahmud AW. 1984. Effect of liming on spore germination, germ tube growth and root colonization by vesicular-arbuscular mycorrhizal fungi. Plant and Soil 76: 115124.
  • Smith FA, Jakobsen I, Smith SE. 2000. Spatial differences in acquisition of soil phosphate between two arbuscular mycorrhizal fungi in symbiosis with Medicago truncatula. New Phytologist 147: 357366.
  • St John TV, Coleman DC, Reid CPP. 1983. Association of vesicular-arbuscular mycorrhizal hyphae with soil organic particles. Ecology 64: 957959.
  • Tabatabai MA, Bremner JM. 1969. Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biology and Biochemistry 1: 301307.
  • Thippayarugs S, Bansal M, Abbott LK. 1999. Morphology and infectivity of fine endophyte in a Mediterranean environment. Mycological Research 103: 13691379.
  • Tunlid A, White DC. 1992. Biochemical analysis of biomass, community structure, nutritional status, and metabolic activity of microbial communities in soil. In: StotzkyG, BollagJ-M, eds. Soil biochemistry, Vol. 7. New York, NY, USA: Dekker, 229262.
  • Vilariño A, Frey B, Shüepp H. 1997. MES [2-(N-morpholino)-ethane sulphonic acid] buffer promotes the growth of external hyphae of the arbuscular mycorrhizal fungus Glomus intraradices in an alkaline sand. Biology and Fertility of Soils 25: 7981.
  • Vosatka M, Dodd JC. 1998. The role of different arbuscular mycorrhizal fungi in the growth of Calamagrostis villosa and Deschampsia flexuosa, in experiments with simulated acid rain. Plant and Soil 200: 251 263.