SEARCH

SEARCH BY CITATION

References

  • Aarons S, Abbas A, Adams C, Fenton A, O'Gara F. 2000. A regulatory RNA (PrrB RNA) modulates expression of secondary metabolite genes in Pseudomonas fluorescens F113. Journal of Bacteriology 182: 3913919.
  • Alabouvette C. 1986. Fusarium wilt suppressive soils from the Chateaurenard region: reviews of a 10 year study. Agronomie 6: 273284.
  • Albus AM, Pesci EC, Runyenjanecky LJ, West SEH, Iglewski BH. 1997. Vfr controls quorum sensing in Pseudomonas aeruginosa. Journal of Bacteriology 179: 39283935.
  • Alström S. 1991. Induction of disease resistance in common bean susceptible to halo blight bacterial pathogen after seed bacterization with rhizosphere pseudomonads. Journal of General and Applied Microbiology 37: 495501.
  • Anjaiah V, Koedam N, Nowak-Thompson B, Loper JE, Höfte M, Tambong JT, Cornelis P. 1998. Involvement of phenazines and anthranilate in the antagonism of Pseudomonas aeruginosa PNA1 and Tn5 derivatives toward Fusarium spp. and Pythium spp. Molecular Plant–Microbe Interactions 11: 847854.
  • Arima K, Imanaka H, Kousaka M, Fukata A, Tamura G. 1964. Pyrrolnitrin, a new antibiotic substance, produced by Pseudomonas. Agriculture Biological Chemistry 28: 575576.
  • Audenaert K, Pattery T, Cornelis P, Höfte M. 2001. Mechanisms of Pseudomonas aeruginosa-induced pathogen resistance in plants. In: PChablain, PCornelis, eds. Pseudomonas 2001 Abstracts book. Brussels, Belgium: Vrije Universiteit Brussel, 36
  • Bahme JB, Schroth MN. 1987. Spatial-temporal colonization patterns of a rhizobacterium on underground organs of potato. Phytopathology 77: 10931100.
  • Bainton NJ, Stead P, Chhabra SR, Bycroft BW, Salmond GP, Stewart GS, Williams P. 1992. N-(3-oxohexanoyl)-l-homoserine lactone regulates carbapenem antibiotic production in Erwinia carotovora. Biochemistry Journal 288: 9971004.
  • Baker KF, Cook RJ. 1974. Biological control of plant pathogens., St Paul, MN, USA: APS.
  • Bakker PAHM, Lamers JG, Bakker AW, Marugg JD, Weisbeek PJ. 1986. The role of siderophores in potato tuber yield increase by Pseudomonas putida in a short rotation of potato. Netherlands Journal of Plant Pathology 92: 249256.
  • Bakker AW, Schippers B. 1987. Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas spp.-mediated plant growth-stimulation. Soil Biological Biochemistry 19: 451457.
  • Baron SS, Rowe JJ. 1981. Antibiotic action of pyocyanin. Antimicrobial Agents and Chemotherapy 20: 814820.
  • Baron SS, Teranova G, Rowe JJ. 1997. Molecular mechanism of the antimicrobial action of pyocyanin. Current Microbiology 18: 223230.
  • Bashan Y. 1998. Inoculants of plant growth-promoting bacteria for use in agriculture. Biotechnology Advances 16: 729770.
  • Becker JO, Hepfer CA, Yuen GY, Van Gundy SD, Schroth MN, Hancock JG, Weinhold AR, Bowman T. 1990. Effect of rhizobacteria and metham-sodium on growth and root microflora of celery cultivars. Phytopathology 80: 206211.
  • Bloemberg GV, Lugtenberg BJ. 2001. Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Current Opinions in Plant Biology 4: 343350.
  • Bloemberg GV, O'Toole GA, Lugtenberg BJJ, Kolter R. 1997. Green fluorescent protein as a marker for Pseudomonas spp. Applied Environmental Microbiology 63: 45434551.
  • Bloemberg GV, Wijfjes AH, Lamers GE, Stuurman N, Lugtenberg BJJ. 2000. Simultaneous imaging of Pseudomonas fluorescens WCS365 populations expressing three different autofluorescent proteins in the rhizosphere: new perspectives for studying microbial communities. Molecular Plant–Microbe Interactions 13: 11701176.
  • Bowen GD, Rovira AD. 1976. Microbial colonization of plant roots. Annual Review of Phytopathology 14: 121144.
  • Brisbane PG, Janik LJ, Tate ME, Warren RFO. 1987. Revised structure for the phenazine antibiotic from Pseudomonas fluorescens 2–79 (NRRL B-15132). Antimicrobial Agents and Chemotherapy 31: 19671971.
  • Buell CR, Anderson AJ. 1993. Expression of the aggA locus of Pseudomonas putida in vitro and in planta as detected by the reporter gene, xylE. Molecular Plant–Microbe Interactions 6: 331340.
  • Bull CT, Weller DM, Thomashow LS. 1991. Relationship between root colonization and suppression of Gaeumannomyces graminis var. tritici by Pseudomonas fluorescens strain 2–79. Phytopathology 81: 954959.
  • Burr TJ, Schroth MN, Suslow T. 1978. Increased potato yield on treatment of seed pieces with specific strains of Pseudomonas fluorescens and P. putida. Phytopathology 68: 13771383.
  • Buyer JS, Leong J. 1986. Iron transport-mediated antagonism between plant growth-promoting and plant-deleterious Pseudomonas strains. Journal of Biological Chemistry 261: 791794.
  • Buysens SJ, Poppe J, Höfte M. 1994. Role of siderophores in plant growth stimulation and antagonism by Pseudomonas aeruginosa 7NSK2, pp. 139141. In: RyderMH, StephensPM, BowenGD, eds. Improving plant productivity with rhizobacteria. Adelaide, Australia: CSIRO Division of Soils.
  • Byng GS, Turner JM. 1976. Isolation of pigmentation of Pseudomonas phenazinium. Journal of General Microbiology 97: 5762.
  • Byng GS, Turner JM. 1977. Incorporation of [14C]shikimate into phenazines and their further metabolism by Pseudomonas phenazinium. Biochemistry Journal 164: 139145.
  • Calhoun DH, Carson M, Jensen RA. 1972. The branch point metabolite for pyocyanin biosynthesis in Pseudomonas aeruginosa. Journal of General Microbiology 72: 581583.
  • Camacho Carvajal MM, Wijfjes AHM, Mulders IHM, Lugtenberg BJJ, Bloemberg GV. 2002. Characterization of NADH dehydrogenases of Pseudomonas fluorescens WCS365 and their role in competitive root colonisation. Molecular Plant–Microbe Interactions 15: 662671.
  • Cao JG, Meighen EA. 1989. Biosynthesis and stereochemistry of the autoinducer controlling luminescence in Vibrio harveyi. Journal of Bacteriology 175: 38563862.
  • Caroll H, Moënne-Loccoz Y, Dowling D, O'Gara F. 1995. Mutational disruption of the biosynthesis genes coding for the antifungal metabolite 2,4-diacetylphloroglucinol does not influence the ecological fitness of Pseudomonas fluorescens F113 in the rhizosphere of sugar beets. Applied Environmental Microbiology 61: 30023007.
  • Chan PF, Bainton NJ, Daykin MM, Winson MK, Chhabra SR, Stewart GSAB, Salmond GPC, Bycroft BW, Williams P. 1995. Molecule mediated autoinduction of antibiotic biosynthesis in the plant pathogen Erwinia carotovora. Biochemistry Society Transactions 23: 127.
  • Chang PC, Blackwood AC. 1969. Simultaneous production of three phenazine pigments by Pseudomonas aeruginosa Mac 436. Canadian Journal of Microbiology 15: 439444.
  • Chapon A, Guillerm AY, Delalande L, Lebreton L, Sarniguet A. 2002. Dominant colonisation of wheat roots by Pseudomonas fluorescens Pf29A and selection of the indigenous microflora in the presence of the take-all fungus. European Journal of Plant Pathology 108: 449459.
  • Chatterjee A, Cui Y, Liu Y, Dumenyo CK, Chatterjee AK. 1995. Inactivation of rsmA leads to overproduction of extracellular pectinases, cellulases, and proteases in Erwinia carotovora subsp. carotovora in the absence of the starvation/cell density-sensing signal, N-(3-oxohexanoyl)- l-homoserine lactone. Applied Environmental Microbiology 61: 19591967.
  • Chen W, Hoitink HAJ, Schmitthenner AF, Tuovinen OH. 1987. Factors affecting suppression of Pythium damping-off in container media amended with composts. Phytopathology 77: 755760.
  • Chiang SL, Mekalanos JJ. 1998. Use of signature-tagged transposon mutagenesis to identify Vibrio cholerae genes critical for colonization. Molecular Microbiology 27: 797805.
  • Chin-A-Woeng TFC, De Priester W, Van Der Bij AJ, Lugtenberg BJJ. 1997. Description of the colonization of a gnotobiotic tomato rhizosphere by Pseudomonas fluorescens biocontrol strain WCS365, using scanning electron microscopy. Molecular Plant–Microbe Interactions 10: 7986.
  • Chin-A-Woeng TFC, Bloemberg GV, Van Der Bij AJ, Van Der Drift KMGM, Schripsema J, Kroon B, Scheffer RJ, Keel C, Bakker PAHM, Tichy HV, De Bruijn FJ, Thomas-Oates JE, Lugtenberg BJJ. 1998. Biocontrol by phenazine-1-carboxamide-producing Pseudomonas chlororaphis PCL1391 of tomato root rot caused by Fusarium oxysporum f. sp. radicis-lycopersici. Molecular Plant–Microbe Interactions 11: 10691077.
  • Chin-A-Woeng TFC, Bloemberg GV, Mulders IHM, Dekkers LC, Lugtenberg BJJ. 2000. Root colonization by phenazine-1-carboxamide-producing bacterium Pseudomonas chlororaphis PCL1391 is essential for biocontrol of tomato foot and root rot. Molecular Plant–Microbe Interactions 13: 13401345.
  • Chin-A-Woeng TFC, Thomas-Oates JE, Lugtenberg BJJ, Bloemberg GV. 2001a. Introduction of the phzH gene of Pseudomonas chlororaphis PCL1391 extends the range of biocontrol ability of phenazine-1-carboxylic acid-producing Pseudomonas spp. strains. Molecular Plant–Microbe Interactions 14: 10061015.
  • Chin-A-Woeng TFC, Van Den Broek D, De Voer G, Van Der Drift KMGM, Tuinman S, Thomas-Oates JE, Lugtenberg BJJ. 2001b. Phenazine-1- carboxamide production in the biocontrol strain Pseudomonas chlororaphis PCL1391 is regulated by multiple factors secreted into the growth medium. Molecular Plant–Microbe Interactions 14: 969979.
  • Choi SH, Greenberg EP. 1992. Genetic dissection of DNA binding and luminescence gene activation by the Vibrio fisheri LuxR protein. Journal of Bacteriology 174: 40644069.
  • Chugani SA, Whiteley M, Lee KM, D’Argenio D, Manoil C, Greenberg EP. 2001. QscR, a modulator of quorum-sensing signal synthesis and virulence in Pseudomonas aeruginosa. Proceedings of the National Academy of Sciences, USA 98: 27522757.
  • Clarholm M. 1984. Heterothrophic, free-living protozoa: neglected microorganisms with an important task in regulating bacterial populations, In: KlugMJ, ReddyCA, eds. Current perspectives in microbial ecology. Washington DC, USA: American Society for Microbiology, 321326.
  • Cook DM, Li PL, Ruchaud R, Padden S, Farrand SK. 1997. Ti plasmid conjugation is independent of vir: reconstitution of the tra functions from pTi58 as a binary system. Journal of Bacteriology 179: 12911297.
  • Cook RJ, Thomashow LS, Weller DM, Fujimoto D, Mazzola M, Bangera G, Kim D. 1995. Molecular mechanisms of defense by rhizobacteria against root disease. Proceedings of the National Academy of Sciences of the USA 92: 41974201.
  • Cook RJ, Bruckart WL, Coulson JR, Goettel MS, Humber RA, Lumsden RD, Maddox JV, McManus ML, Moore L, Meyer SF, Quimbly PC Jr, Stack JP, Vaughan JL. 1996. Safety of microorganisms intended for pest and plant disease control: a framework for scientific evaluation. Biocontrol 7: 333351.
  • Davies DG, Parsek MR, Pearson JP, Iglewski BH, Costerton JW, Greenberg EP. 1998. The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280: 295298.
  • Dekkers LC. 1997. Isolation and characterization of novel rhizosphere colonization mutants of Pseudomonas fluorescens WCS365. PhD thesis. Leiden, The Netherlands: Leiden University.
  • Dekkers LC, Bloemendaal CP, De Weger LA, Wijffelman CA, Spaink HP, Lugtenberg BJJ. 1998a. A two-component system plays an important role in the root-colonizing ability of Pseudomonas fluorescens strain WCS365. Molecular Plant–Microbe Interactions 11: 4556.
  • Dekkers LC, Van Der Bij AJ, Mulders IHM, Phoelich CC, Wentwood RAR, Glandorf DCM, Wijffelman CA, Lugtenberg BJJ. 1998b. Role of the O-antigen of lipopolysaccharide, and possible roles of growth rate and of NADH: ubiquinone oxidoreductase (nuo) in competitive tomato root-tip colonization by Pseudomonas fluorescens WCS365. Molecular Plant–Microbe Interactions 11: 763771.
  • Dekkers LC, Phoelich CC, Van Der Fits L, Lugtenberg BJJ. 1998c. A site-specific recombinase is required for competitive root colonization by Pseudomonas fluorescens WCS365. Proceedings of the National Academy of Sciences, USA 95: 70517056.
  • Dekkers LC, Mulders IH, Phoelich CC, Chin-A-Woeng TFC, Wijfjes AH, Lugtenberg BJ. 2000. The sss colonization gene of the tomato-Fusarium oxysporum f. sp. radicis-lycopersici biocontrol strain Pseudomonas fluorescens WCS365 can improve root colonization of other wild-type Pseudomonas spp. bacteria. Molecular Plant–Microbe Interactions 13: 11771183.
  • Delaney SM, Mavrodi DV, Bonsall RF, Thomashow LS. 2001. phzO, a gene for biosynthesis of 2-hydroxylated phenazine compounds in Pseudomonas aureofaciens 30–84. Journal of Bacteriology 183: 318327.
  • Van Delden C, Comte R, Bally AM. 2001. Stringent response activates quorum sensing and modulates cell density-dependent gene expression in Pseudomonas aeruginosa. Journal of Bacteriology 183: 53765384.
  • DeMot R, Veulemans B, Vanderleyden J. 1991. Root-adhesive protein of Pseudomonas fluorescens OE28-3. In: KeelC, KnollerB, DéfagoG, eds. Plant growth-promoting rhizobacteria. Progress and prospects. International Organization for Biological and Integrated Control of Noxious Animals and Plants. Proceedings of the 2nd International Workshop on PGPR. WPRS Bulletin XIV/8, 308312.
  • Devine JH, Shadel GS. 2000. Assay of autoinducer activity with luminescent Escherichia coli sensor strains harboring a modified Vibrio fischeri lux regulon. Methods Enzymology 305: 279287.
  • Di Pietro A, Lorito M, Hayes CK, Broadway RM, Harman GE. 1993. Endochitinase from Gliocladium virens: isolation, characterisation and synergistic antifungal activity in combination with gliotoxin. Phytopathology 83: 308312.
  • Dowling DN, O'Gara F. 1994. Metabolites of Pseudomonas involved in the biocontrol of plant disease. TIBTECH 12: 133141.
  • Drake D, Montie TC. 1988. Flagella, motility and invasive virulence of Pseudomonas aeruginosa. Journal of General Microbiology 134: 4352.
  • Duffy BK, Simon A, Weller DM. 1996. Combination of Trichoderma koningii with fluorescent pseudomonads for control of take-all on wheat. Phytopathology 86: 188194.
  • Duijff BJ, Meijer JW, Bakker PAHM, Schippers B. 1983. Siderophore-mediated competition for iron and induced systemic resistance of Fusarium wilt of carnation by fluorescent Pseudomonas spp. Netherlands Journal of Plant Pathology 99: 277289.
  • Dunlap C, Delaney I, Fenton A, Lohrke S, Moënne-Loccoz Y, O'Gara F. 1996. The biotechnology and application of Pseudomonas inoculants for the biocontrol of phytopathogens, pp. 441448. In: StaceyG, MullinB, GresshoffPM, eds. Biology of plant microbe interactions. St Paul, MN, USA: International Society for Molecular Plant–Microbe Interactions.
  • Dunlap C, Crowley JJ, Moënne-Loccoz Y, Dowling DN, De Bruijn FJ, O'Gara F. 1997. Biological control of Pythium ultimum by Stenotrophomonas maltophilia W81 is mediated by an extracellular proteolytic activity. Microbiology 143: 39213931.
  • Dunne C, Delany I, Fenton A, O'Gara F. 1996. Mechanisms involved in biocontrol by microbial inoculants. Agronomie 16: 721729.
  • Dunne C, Moenne LY, McCarthy J, Higgins P, Powell J, Dowling D, O'Gara F. 1998. Combining proteolytic and phloroglucinol-producing bacteria for improved biocontrol of Pythium-mediated damping-off of sugar beet. Plant Pathology 47: 299307.
  • Eberhard A. 1972. Inhibition and activation of bacterial luciferase synthesis. Journal of Bacteriology 109: 11011105.
  • Eberhard AT, Longin T, Widrig CA, Stranick SJ. 1991. Synthesis of the lux gene autoinducer in Vibrio fischeri is positively autoregulated. Archives of Microbiology 155: 294297.
  • Eberl L, Winson MK, Sternberg C, Stewart GB, Christiansen G, Chhabra SR, Bycroft B, Williams P, Molin S, Givskov M. 1996. Involvement of N-acyl-l-homoserine lactone autoinducers in controlling the multicellular behaviour of Serratia liquefaciens. Molecular Microbiology 20: 127136.
  • Elasri M, Delorme S, Lemanceau P, Stewart G, Laue B, Glickmann E, Oger PM, Dessaux Y. 2001. Acyl-homoserine lactone production is more common among plant-associated Pseudomonas spp. than among soilborne Pseudomonas spp. Applied Environmental Microbiology 67: 11981209.
  • Emmert EAB, Handelsman J. 1999. Biocontrol of plant disease: a (Gram-) positive perspective. FEMS Microbiological Letters 171: 19.
  • Fenton A, Stephens PM, Crowley JJ, O'Callaghan M, O'Gara F. 1992. Exploitation of gene (s) involved in 2,4-diacetylphloroglucinol biosynthesis to confer a new biocontrol capability to a Pseudomonas strain. Applied Environmental Microbiology 58: 38733878.
  • Fernandez RO, Pizarro RA. 1997. High performance liquid chromatographic analysis of Pseudomonas aeruginosa phenazines. Journal of Chromatography A 771: 99104.
  • Fernando WGD, Watson AK, Paulitz TC. 1996. The role of Pseudomonas spp. and competition for carbon, nitrogen and iron in the enhancement of appressorium formation by Colletotrichum coccodes on velvetleaf. European Journal of Plant Pathology 102: 17.
  • Flaishman M, Eyal Z, Voisard C, Haas D. 1990. Suppression of Septoria tritici by phenazine- or siderophore-deficient mutants of Pseudomonas. Current Microbiology 20: 121124.
  • Fogliano V, Ballio A, Gallo M, Woo S, Scala F, Lorito M. 2002. Pseudomonas lipodepsipeptides and fungal cell wall-degrading enzymes act synergistically in biological control. Molecular Plant–Microbe Interactions 15: 323333.
  • Fravel DR, Lumsden RD, Roberts DP. 1990. In situ visualization of the biocontrol rhizobacterium Enterobacter cloacae with bioluminescence. Plant and Soil 125: 233238.
  • Fuqua WC, Winans SC, Greenberg EP. 1994. Quorum sensing in bacteria: the LuxR–LuxI family of cell density-responsive transcriptional regulators. Journal of Bacteriology 176: 269275.
  • Gaffney T, Friedrich L, Vernooij B, Negretto D, Nye G, Uknes S, Ward E, Kessmann H, Ryals J. 1993. Requirement of salicylic acid for the induction of systemic acquired resistance. Science 261: 754756.
  • Gaffney TD, Lam ST, Ligon J, Gates K, Frazelle A, Di Maio J, Hill S, Goodwin S, Torkewitz N, Allshouse AM, Kempf H-J, Becker JO. 1994. Global regulation of expression of antifungal factors by a Pseudomonas fluorescens biological control strain. Molecular Plant–Microbe Interactions 7: 455463.
  • Galli E, Silver S, Witholt B. 1992. Pseudomonas: molecular biology and biotechnology. Washington DC, UK: American Society for Microbiology.
  • Gealy DR, Gurusiddaiah S, Ogg AG. 1996. Isolation and characterization of metabolites from Pseudomonas syringae strain 3366 and their phytotoxicity against certain weed and crop species. Weed Science 44: 383392.
  • Geels FP, Schippers B. 1983. Reduction in yield depressions in high frequency potato cropping soil after seed tuber treatments with antagonistic fluorescent Pseudomonas spp. Phytopathologische Zeitschrift 108: 207214.
  • Glandorf DCM, Sluis I, Anderson AJ, Bakker PAHM, Schippers B. 1994. Agglutination, adherence, and root colonization by fluorescent pseudomonads. Applied Environmental Microbiology 60: 17261733.
  • Gray KM, Pearson JP, Downie JA, Boboye BEA, Greenberg EP. 1996. Cell to cell signaling in the symbiotic nitrogen fixing bacterium Rhizobium leguminosarum: autoinduction of a stationary phase and rhizosphere expressed genes. Journal of Bacteriology 178: 372376.
  • Gross R, Arico B, Rappuoli R. 1989. Families of bacterial signal-transducing proteins. Molecular Microbiology 3: 16611667.
  • Gutterson N. 1990. Microbial fungicides: recent approaches to elucidating mechanisms. Critical Reviews in Microbiology 10: 6991.
  • Haas D, Blumer C, Keel C. 2000. Biocontrol ability of fluorescent pseudomonads genetically dissected: importance of positive feedback regulation. Current Opinions in Biotechnology 11: 290297.
  • Haas D, Keel C, Laville J, Maurhofer M, Oberhänsli T, Schnider U, Voisard C, Wuthrich B, Defago G. 1991. Secondary metabolites of Pseudomonas fluorescens strain CHA0 involved in the suppression of root diseases, In: HenneckeH, VermaPS, eds. Advances in molecular genetics of plant–microbe interactions. Dordrecht, The Netherlands: Kluwer Academic Publishers, 450456.
  • Habte M, Alexander M. 1977. Further evidence for the regulation of bacterial populations in soil by protozoa. Archives of Microbiology 113: 181183.
  • Hammer PE, Hill DS, Lam ST, Van-Pee KH, Ligon JM. 1997. Four genes from Pseudomonas fluorescens that encode the biosynthesis of pyrrolnitrin. Applied Environmental Microbiology 63: 21472154.
  • Handelsman J, Raffel SJ, Mester EH, Wunderlich L, Grau CR. 1999. Biological control of damping-off of alfalfa seedlings with Bacillus cereus UW85. Applied Environmental Microbiology 56: 713718.
  • Handelsman J, Stabb EV. 1996. Biocontrol of soilborne plant pathogens. Plant Cell 8: 18551869.
  • Hanzelka BL, Greenberg EP. 1995. Evidence that the N-terminal region of the Vibrio fischeri LuxR protein constitutes an autoinducer-binding domain. Journal of Bacteriology 177: 815817.
  • Hanzelka BL, Greenberg EP. 1996. Quorum sensing in Vibrio fischeri: evidence that S-adenosylmethionine is the amino acid substrate for autoinducer synthesis. Journal of Bacteriology 178: 52915294.
  • Hanzelka BL, Stevens AM, Parsek MR, Crone TJ, Greenberg EP. 1997. Mutational analysis of the Vibrio fischeri luxI polypeptide: Critical regions of an autoinducer synthase. Journal of Bacteriology 179: 48824887.
  • Hassett DJ, Charniga L, Bean K, Ohman DE, Cohen MS. 1992. Response of Pseudomonas aeruginosa to pyocyanin: mechanisms of resistance, antioxidant defenses, and demonstration of a manganese-cofactored superoxide dismutase. Infection and Immunity 60: 328336.
  • Hassett DJ, Schweizer HP, Ohman DE. 1995. Pseudomonas aeruginosa sodA and sodB mutants defective in manganese- and iron-cofactored superoxide dismutase activity demonstrate the importance of the iron-cofactored form in aerobic metabolism. Journal of Bacteriology 177: 63306337.
  • Hawes MC, Brigham LA, Wen F, Woo HH, Zhu Z. 1998. Function of root border cells in plant health: Pioneers in the rhizosphere. Annual Review of Phytopathology 36: 311327.
  • Heeb S, Haas D. 2001. Regulatory roles of the GacS–GacA two-component system in plant- associated and other gram-negative bacteria. Molecular Plant–Microbe Interactions 14: 13511363.
  • Henikoff S, Haughn GW, Calvo JM, Wallace JC. 1988. A large family of bacterial activator proteins. Proceedings of the National Academy of Sciences of the USA 85: 66026606.
  • Hill DS, Stein JI, Torkewitz NR, Morse AM, Howell CR, Pachlatko JP, Becker JO, Ligon JM. 1994. Cloning of genes involved in the synthesis of pyrrolnitrin from Pseudomonas fluorescens and role of pyrrolnitrin synthesis in biological control of plant disease. Applied Environmental Microbiology 60: 7885.
  • Hoffland E, Pieterse CMJ, Bik L, Van Pelt JA. 1995. Induced systemic resistance in radish is not associated with accumulation of pathogenesis-related proteins. Physiological Molecular Plant Pathology 46: 309320.
  • Hoitink HAJ, Fahy PC. 1986. Basis for the control of soilborne plant pathogens with composts. Annual Review of Phytopathology 24: 93114.
  • Hollstein U, McCamey DA. 1973. Biosynthesis of phenazines. II. Incorporation of [6-14C]-d-shikimic acid into phenazine-1-carboxylic acid and iodinin. Journal of Organic Chemistry 38: 3417.
  • Homma Y. 1994. Mechanisms in biological control – focussed on the antibiotic pyrrolnitrin. In: RyderMH, StephensPM, BowenGD, eds. Improving plant productivity with rhizobacteria. Adelaide, Australia: CSIRO Division of Soils, 100103.
  • Howell CR, Stipanovic RD. 1979. Control of Rhizoctonia solani on cotton seedlings with Pseudomonas fluorescens and with an antibiotic produced by the bacterium. Phytopathology 69: 480482.
  • Howell CR, Stipanovic RD. 1980. Suppression of Pythium ultimum-induced damping-off of cotton seedlings by Pseudomonas fluorescens and its antibiotic, pyoluteorin. Phytopathology 70: 712715.
  • Howell CR, Beier RC, Stipanovic RD. 1988. Production of ammonia by Enterobacter cloacae and its role in the biological control of Pythium preemergence damping-off by the bacterium. Phytopathology 78: 10751078.
  • Howie WJ, Suslow T. 1991. Role of antibiotic synthesis in the inhibition of Pythium ultimum in the cotton spermosphere and rhizosphere by Pseudomonas fluorescens. Molecular Plant–Microbe Interactions 4: 393399.
  • Howie WJ, Cook RJ, Weller DM. 1987. Effect of soil matric potential and cell motility on wheat root colonization by fluorescent pseudomonads suppressive to take-all. Phytopathology 77: 286292.
  • Huang SS, Djordjevic MA, Rolfe BG. 1993. Microscopic analysis of the effect of Rhizobium leguminosarum biovar trifolii host specific nodulation genes in the infection of white clovers. Protoplasma 172: 180190.
  • Huisman GW, Kolter R. 1994. Sensing starvation: a homoserine lactone-dependent signalling pathway in Escherichia coli. Science 265: 537539.
  • Hunt MD, Neuenschwander UH, Delaney TP, Weymann KB, Friedrich LB, Lawton KA, Steiner HY, Ryals JA. 1996. Recent advances in systemic acquired resistance – a review. Gene 7: 8995.
  • Ingledew WM, Campbell JJR. 1969. Evaluation of shikimic acid as a precursor of pyocyanin. Canadian Journal of Microbiology 15: 535 541.
  • Janisiewicz WJ, Roitman J. 1988. Biological control of blue mold and grey mold on apple and pear with Pseudomonas cepacia. Phytopathology 78: 16971700.
  • Jijakli MH, Lepoivre P. 1998. Characterization of an exo-beta-1,3-glucanase produced by Pichia anomala strain K, antagonist of Botrytis cinerea on apples. Phytopathology 88: 335343.
  • Kang Y, Carlson R, Tharpe W, Schell MA. 1998. Characterization of genes involved in biosynthesis of a novel antibiotic from Burkholderia cepacia BC11 and their role in biological control of Rhizoctonia solani. Applied Environmental Microbiology 64: 39393947.
  • Kanner D, Gerber NN, Bartha R. 1978. Pattern of phenazine pigment production by a strain of Pseudomonas aeruginosa. Journal of Bacteriology 134: 690692.
  • Kaplan HB, Greenberg EP. 1985. Diffusion of autoinducer is involved in regulation of the Vibrio fischeri luminescence system. Journal of Bacteriology 163: 12101214.
  • Keel C, Wirthner P, Oberhänsli T, Voisard C, Haas D, Défago G. 1990. Pseudomonads as antagonists of plant pathogens in the rhizosphere: role of the antibiotic 2,4-diacetylphloroglucinol in the suppression of black root of tobacco. Symbiosis 9: 327341.
  • Keel C, Schnider U, Maurhofer M, Voisard C, Laville J, Burger U, Wirthner P, Haas D, Défago G. 1992. Suppression of root diseases by Pseudomonas fluorescens CHA0: importance of the bacterial secondary metabolite 2,4-diacetylphloroglucinol. Molecular Plant–Microbe Interactions 5: 413.
  • Kloepper JW. 1980. Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature 286: 885886.
  • Kloepper JW, Schroth MN. 1978. Plant growth-promoting rhizobacteria in radish. In: Station de Pathologie Vegetale et Phytobacteriologie, eds. Proceedings of the 4th International Conference on Plant Pathogenic Bacteria, Vol. 2: INRA. Angers. Tours, France: Gilbert-Clarey, 879882.
  • Knudsen IMB, Hockenhull J, Jensen DF, Gerhardson B, Hokeberg M, Tahvonen R, Teperi E, Sundheim L, Henriksen B. 1997. Selection of biological control agents for controlling soil and seed-borne diseases in the field. European Journal of Plant Pathology 103: 775784.
  • Kojic M, Venturi V. 2001. Regulation of rpoS gene expression in Pseudomonas: involvement of a TetR family regulator. Journal of Bacteriology 183: 37123720.
  • Kolibachuk D, Greenberg EP. 1993. The Vibrio fisheri luminescence gene activator LuxR is a membrane-associated protein. Journal of Bacteriology 175: 73077312.
  • Korth H. 1971. Einfluß von Eisen und Sauerstoff aud die Pigmentbildung bei verschiedenen Pseudomonas species. Archives of Mikrobiology 77: 5964.
  • Korth H. 1973a. Über die selective Bilding von Phenazin-α-carbonsäure bei Pseudomonas aeruginosa in sauerem Milieu und deren Eigenschaften als Redoxkatalysator. Zentralblatt für Bakteriologie, Mikrobiologie und Hygiene. 1. Abteilung Originale 185: 511515.
  • Korth H. 1973b. Carbon source regulation of the phenazine-alpha-carboxylic acid synthesis in Pseudomonas aureofaciens. Archives of Microbiology 92: 175177.
  • Korth H. 1974. Mixed carbon source effect in the phenazine-α-carboxylic acid synthesis and the aromatic pathway in Pseudomonas spp. Archives of Microbiology 97: 245252.
  • Koster M, Van De Vossenberg J, Leong J, Weisbeek PJ. 1993. Identification and characterization of the pupB gene encoding an inducible ferric- pseudobactin receptor of Pseudomonas putida WCS358. Molecular Microbiology 8: 591601.
  • Koster M, Ovaa W, Bitter W, Weisbeek P. 1995. Multiple outer membrane receptors for uptake of ferric pseudobactins in Pseudomonas putida WCS385. Molecular General Genetics 248: 735743.
  • Kraus J, Loper JE. 1995. Characterization of a genomic region required for production of the antibiotic pyoluteorin by the biological control agent Pseudomonas fluorescens Pf-5. Applied Environmental Microbiology 61: 849854.
  • Labeyrie S, Neuzil E. 1981. Addition de tyrosine ou de phénylalanine aux cultures de Pseudomonas aeruginosa: influence sur la croissance microbienne et la pigmentation. Annals of Microbiology (Institute Pasteur) 132: 3140.
  • Lagopodi AL, Ram AFJ, Lamers GEM, Punt PJ, Van Den Hondel CAMJJ, Lugtenberg BJJ, Bloemberg GV. 2002. Novel aspects of tomato root colonization and infection by Fusarium oxysporum f. sp. radicis-lycopersici revealed by confocal laser scanning microscopic analysis using the green fluorescent protein as a marker. Molecular Plant–Microbe Interactions 15: 172179.
  • Latifi A, Winson MK, Foglino M, Bycroft BW, Stewart GSAB, Lazdunski A, Williams P. 1995. Multiple homologues of LuxR and LuxI control expression of virulence determinants and secondary metabolites through quorum sensing in Pseudomonas aeruginosa PAO1. Molecular Microbiology 17: 333343.
  • Latifi A, Foglino M, Tanaka K, Williams P, Lazdunski A. 1996. A hierarchical quorum sensing cascade in Pseudomonas aeruginosa links the transcriptional activators LasR and RhiR (VsmR) to expression of the stationary-phase sigma factor RpoS. Molecular Microbiology 21: 11371146.
  • Laville J, Voisard C, Keel C, Maurhofer M, Défago G, Haas D. 1992. Global control in Pseudomonas fluorescens mediating antibiotic synthesis and suppression of black root rot of tobacco. Proceedings of the National Academy of Sciences, USA 89: 15621566.
  • Laville J, Blumer C, Von Schroetter C, Gaia V, Defago G, Keel C, Haas D. 1998. Characterization of the hcnABC gene cluster encoding hydrogen cyanide and anaerobic regulation by ANR in the strictly aerobic biocontrol agent Pseudomonas fluorescens CHA0. Journal of Bacteriology 180: 31873196.
  • Leeman M, Van Pelt JA, Denouden FM, Heinsbroek M, Bakker PAHM, Schippers B. 1995a. Induction of systemic resistance by Pseudomonas fluorescens in radish cultivars differing in susceptibility to fusarium wilt, using a novel bioassay. European Journal of Plant Pathology 101: 655664.
  • Leeman M, Van Pelt JA, Denouden FM, Heinsbroek M, Bakker PAHM, Schippers B. 1995b. Induction of systemic resistance against Fusarium wilt of radish by lipopolysaccharides of Pseudomonas fluorescens. Phytopathology 85: 10211027.
  • Leisinger T, Margraff R. 1979. Secondary metabolites of the fluorescent pseudomonads. Microbiological Review 43: 422442.
  • Lemanceau P, Alabouvette C. 1993. Suppression of fusarium wilts by fluorescent pseudomonads: mechanisms and applications. Biocontrol Science and Technology 3: 219234.
  • Lemanceau P, Bakker PAHM, Kogel WJ, Alabouvette C, Schippers B. 1992. Effect of pseudobactin 358 production by Pseudomonas putida WCS358 on suppression of fusarium wilt of carnations by nonpathogenic Fusarium oxysporum Fo47. Applied Environmental Microbiology 58: 29782982.
  • Lemanceau P, Bakker PAHM, Kogel WJ, Alabouvette C. 1993. Antagonistic effect of nonpathogenic Fusarium oxysporum Fo47 and pseudobactin 358 upon pathogenic Fusarium oxysporum f. sp. dianthi. Applied Environmental Microbiology 59: 7482.
  • Leong J. 1986. Siderophores: their biochemistry and possible role in the biocontrol of plant pathogens. Annual Review of Phytopathology 24: 187209.
  • Levitch ME. 1970. Regulation of aromatic amino acid biosynthesis in phenazine-producing strains of Pseudomonas. Journal of Bacteriology 103: 1619.
  • Lindow SE. 1983a. Methods of preventing frost injury caused by epiphytic ice-nucleation-active bacteria. Plant Disease 67: 327333.
  • Lindow SE. 1983b. The role of bacterial ice nucleation in frost injury to plants. Annual Review of Phytopathology 21: 363384.
  • Lindow SE, Arny DC, Upper CD. 1983. Biological control of frost injury: an isolate of Erwinia herbicola antagonistic to ice nucleation active bacteria. Phytopathology 73: 10971102.
  • Liu MY, Gui G, Wei B, Preston JF III, Oakford L, Yuksel U, Giedroc DP, Romeo T. 1997. The RNA molecule CsrB binds to the global regulatory protein CsrA and antagonizes its activity in Escherichia coli. Journal of Biological Chemistry 272: 1750217510.
  • Liu Y, Murata H, Chatterjee A, Chatterjee AK. 1993. Characterization of a novel regulatory gene aepA that controls extracellular enzyme production in the phytopathogenic bacterium Erwinia carotovora subsp. carotovora. Molecular Plant–Microbe Interactions 6: 299308.
  • Longley RP, Halliwell JE, Campbell JJR, Ingledew WM. 1972. The branch point of pyocyanin biosynthesis. Canadian Journal of Microbiology 18: 13571368.
  • Van Loon LC. 1997. Induced resistance in plants and the role of pathogenesis-related proteins. European Journal of Plant Pathology 103: 753765.
  • Van Loon LC, Bakker PAHM, Pieterse CMJ. 1998. Systemic resistance induced by rhizosphere bacteria. Annual Review of Phytopathology 36: 453483.
  • Loper JE. 1988. Role of fluorescent siderophore production in biological control of Pythium ultimum by a Pseudomonas fluorescens strain. Phytopathology 78: 166172.
  • Loper JE, Buyer JS. 1991. Siderophores in microbial interactions on plant surfaces. Molecular Plant–Microbe Interaction 4: 513.
  • Loper JE, Haack C, Schroth MN. 1985. Population dynamics of soil pseudomonads in rhizosphere of potato (Solanum tuberosum L.). Applied Environmental Microbiology 49: 416422.
  • Lorito M, Peterbauer C, Hayes CK, Harman GE. 1994. Synergistic interaction between fungal cell wall degrading enzymes and different antifungal compounds enhances inhibition of spore germination. Microbiology 140: 623629.
  • Lugtenberg BJJ, Dekkers LC. 1999. What makes Pseudomonas bacteria rhizosphere competent? Environmental Microbiology 1: 913.
  • Lugtenberg BJJ, De Weger LA, Bennett JW. 1991. Microbial stimulation of plant growth and protection from disease. Current Opinions in Biotechnology 2: 457464.
  • Lugtenberg BJJ, De Weger LA, Schippers B. 1994. Bacterization to protect seed and rhizosphere against disease. BCPC Monograph 57: 293302.
  • Lugtenberg BJJ, Kravchenko LV, Simons M. 1999a. Tomato seed and root exudate sugars: composition, utilization by Pseudomonas biocontrol strains and role in rhizosphere colonization. Environmental Microbiology 1: 439446.
  • Lugtenberg BJJ, Dekkers LC, Bansraj M, Bloemberg GV, Camacho M, Chin-A-Woeng TFC, Van Den Hondel C, Kravchenko L, Kuiper I, Lagopodi AL, Mulders I, Phoelich C, Ram A, Tikhonovich I, Tuinman S, Wijffelman C, Wijfjes A. 1999b. Pseudomonas genes and traits involved in tomato root colonization. In: De WitPJGM, BisselingT, StiekemaWJ, eds. 1999IC-MPMI Congress Proceedings: biology of plant–microbe interactions, Vol. 2. St Paul, MN, USA: International Society for Molecular Plant–Microbe Interactions, 324330.
  • Mahajan MS, Tan MW, Rahme LG, Ausubel FM. 1999. Molecular mechanisms of bacterial virulence elucidated using a Pseudomonas aeruginosa–Caenorhabditis elegans pathogenesis model. Cell 96: 4756.
  • Massiere F, Badet DM. 1998. The mechanism of glutamine-dependent amidotransferases. Cell Molecular Life Science 54: 205222.
  • Maurhofer M, Keel C, Schnider U, Voisard C, Haas D, Défago G. 1992. Influence of enhanced antibiotic production in Pseudomonas fluorescens strain CHA0 on its disease suppressive capacity. Phytopathology 82: 190195.
  • Maurhofer M, Keel C, Défago G. 1994a. Pyoluteorin production by Pseudomonas fluorescens strain CHA0 is involved in the suppression of Pythium damping-off of cress but not of cucumber. European Journal of Plant Pathology 100: 221232.
  • Maurhofer M, Hase C, Meuwly P, Metraux J-P, Defago G. 1994b. Induction of systemic resistance of tobacco to tobacco necrosis virus by the root-colonizing Pseudomonas fluorescens strain CHA0: influence of the gacA gene and of pyoverdine production. Phytopathology 84: 139146.
  • Mavrodi DV, Bonsall RF, Delaney SM, Soule MJ, Phillips G, Thomashow LS. 2001. Functional analysis of genes for biosynthesis of pyocyanin and phenazine-1-carboxamide from Pseudomonas aeruginosa PAO1. Journal of Bacteriology 183: 64546465.
  • Mavrodi DV, Ksenzenko VN, Bonsall RF, Cook RJ, Boronin AM, Thomashow LS. 1998. A seven-gene locus for synthesis of phenazine-1-carboxylic acid by Pseudomonas fluorescens 2–79. Journal of Bacteriology 180: 25412548.
  • Mazzola M, Cook RJ, Thomashow LS, Weller DM, Pierson LS. 1992. Contribution of phenazine antibiotic biosynthesis to the ecological competence of fluorescent pseudomonads in soil habitats. Applied Environmental Microbiology 58: 26162624.
  • McClean KH, Winson MK, Fish L, Taylor A, Chhabra SR, Camara M, Daykin M, Lamb JH, Swift S, Bycroft BW, Stewart GB, Williams P. 1997. Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. Microbiology 143: 37033711.
  • McDonald M, Mavrodi DV, Thomashow LS, Floss HG. 2001. Phenazine biosynthesis in Pseudomonas fluorescens: Branchpoint from the primary shikimate biosynthetic pathway and role of phenazine-1,6-dicarboxylic acid. Journal of the American Chemistry Society 123: 94599460.
  • McGowan S, Sebaihia M, Jones S, Yu B, Bainton N, Chan PF, Bycroft B, Stewart GS, Williams P, Salmond GP. 1995. Carbapenem antibiotic production in Erwinia carotovora is regulated by CarR, a homologue of the LuxR transcriptional activator. Microbiology 141: 541550.
  • McLoughlin AJ. 1994. Plasmid stability and ecological competence in recombinant cultures. Biotechnological Advances 12: 279324.
  • McLoughlin J, Quinn P, Betterman A, Brooklan R. 1992. Pseudomonas cepacia suppression of sunflower wilt fungus and role of antifungal compounds in controlling the disease. Applied Environmental Microbiology 56: 17601763.
  • Messenger AJ, Turner JM. 1983. Phenazine-1,6-dicarboxylate and its dimethyl ester as precursors of other phenazines in bacteria. FEMS Microbiological Letters 18: 64.
  • Mirleau P, Delorme S, Philippot L, Meyer JM, Mazurier S, Lemanceau P. 2000. Fitness in soil and rhizosphere of Pseudomonas fluorescens C7R12 compared with a C7R12 mutant affected in pyoverdine synthesis and uptake. FEMS Microbiological Ecology 34: 3544.
  • Mirleau P, Philippot L, Corberand T, Lemanceau P. 2001. Involvement of nitrate reductase and pyoverdine in competitiveness of Pseudomonas fluorescens strain C7R12 in soil. Applied Environmental Microbiology 67: 26272635.
  • Moens S, Vanderleyden J. 1996. Functions of bacterial flagella. Critical Reviews in Microbiology 22: 67100.
  • Nealson KH, Platt T, Woodland Hastings J. 1970. Cellular control of the synthesis and activity of the bacterial luminescent system. Journal of Bacteriology 104: 313322.
  • Nielsen TH, Christophersen C, Anthoni U, Sorensen J. 1999. Viscosinamide, a new cyclic depsipeptide with surfactant and antifungal properties produced by Pseudomonas fluorescens DR54. Journal of Applied Microbiology 87: 8090.
  • Nikaido H. 1996. Multidrug efflux pumps of gram-negative bacteria. Journal of Bacteriology 178: 58535859.
  • Nowak-Thompson B, Gould SJ, Loper JE. 1997. Identification and sequence analysis of the genes encoding a polyketide synthase required for pyoluteorin biosynthesis in Pseudomonas fluorescens Pf-5. Gene 204: 1724.
  • Ochsner UA, Reiser J. 1995. Autoinducer-mediated regulation of rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. Proceedings of the National Academy of Sciences of the USA 92: 64246428.
  • Oka Y, Chet I, Spiegel Y. 1993. Control of the root nematode Meloidogyne javanica by Bacillus cereus. Biocontrol Science and Technology 3: 115126.
  • Passador L, Cook JM, Gambello MJ, Rust L, Iglewski BH. 1993. Expression of Pseudomonas aeruginosa virulence genes requires cell-to-cell communication. Science 260: 11271130.
  • Pattery T, Mondt K, Audenaert K, Cornelis P, Cornelis P. 2001. Identification of phzM, a new phenazine biosynthesis gene necessary for the production of pyocyanin by Pseudomonas aeruginosa . In: ChablainP, CornelisP, eds. Pseudomonas 2001 abstracts book. Brussels, Belgium: Vrije Universiteit Brussel, 201.
  • Pearson JP, Gray KM, Passador L, Tucker KD, Eberhard A, Iglewski BH, Greenberg EP. 1994. Structure of the autoinducer required for expression of Pseudomonas aeruginosa virulence genes. Proceedings of the National Academy of Sciences, USA 91: 197201.
  • Pearson JP, Pesci EC, Iglewski BH. 1997. Roles of Pseudomonas aeruginosa las and rhl quorum sensing systems in control of elastase and rhamnolipid biosynthesis genes. Journal of Bacteriology 179: 57565767.
  • Pearson JP, Van-Delden C, Iglewski BH. 1999. Active efflux and diffusion are involved in transport of Pseudomonas aeruginosa cell-to-cell signals. Journal of Bacteriology 181: 12031210.
  • Pessi G, Haas D. 2001. Dual control of hydrogen cyanide biosynthesis by the global activator GacA in Pseudomonas aeruginosa PAO1. FEMS Microbiological Letters 200: 7378.
  • Pierson LS III, Pierson EA. 1996. Phenazine antibiotic production in Pseudomonas aureofaciens: role in rhizosphere ecology and pathogen suppression. FEMS Microbiological Letters 136: 101108.
  • Pierson LS III, Thomashow LS. 1992. Cloning and heterologous expression of the phenazine biosynthetic locus from Pseudomonas aureofaciens 30–84. Molecular Plant–Microbe Interactions 5: 330339.
  • Pierson LS III, Keppenne VD, Wood DW. 1994. Phenazine antibiotic biosynthesis in Pseudomonas aureofaciens 30–84 is regulated by PhzR in response to cell density. Journal of Bacteriology 176: 39663974.
  • Pierson LS III, Gaffney T, Lam S, Gong F. 1995. Molecular analysis of genes encoding phenazine biosynthesis in the biological control bacterium Pseudomonas aureofaciens 30–84. FEMS Microbiological Letters 134: 299307.
  • Pierson LS III, Wood DW, Pierson EA, Chancey ST. 1998. N-acyl- homoserine lactone-mediated gene regulation in biological control by fluorescent pseudomonads: Current knowledge and future work. European Journal of Plant Pathology 104: 19.
  • Pierson LS III, Pierson EA, Morello JE. 2002. Positive and negative cross-communication among rhizobacteria. In: LeongSA, AllenC, TriplettEW, eds. Biology of plant–microbe interactions. St Paul, MN, USA: International Society for Molecular Plant–Microbe Interaction, 256262.
  • Pieterse CMJ, Van Wees SCM, Hoffland E, Van Pelt JA, Van Loon LC. 1996. Systemic resistance in Arabidopsis induced by biocontrol bacteria is independent of salicylic acid accumulation and pathogenesis related gene expression. Plant Cell 8: 12251237.
  • Pieterse CMJ, Van Pelt JA, Van Wees SCM, Ton J, Leon-Kloosterziel KM, Keurentjes JJB, Verhagen BWM, Van Knoester M, , DSI, Bakker PAHM, Van Loon LC. 2001. Rhizobacteria-mediated induced systemic resistance: triggering, signalling and expression. European Journal of Plant Pathology 107: 5161.
  • Piper KR, Beck von Bodman S, Farrand SK. 1993. Conjugation factor of Agrobacterium tumefaciens regulates Ti plasmid transfer by autoinduction. Nature 362: 448450.
  • Powell JF, Vargas JM, Nair MG, Detweiler AR, Chandra A. 2000. Management of dollar spot on creeping bentgrass with metabolites of Pseudomonas aureofaciens (TX-1). Plant Disease 84: 1924.
  • Pusey PL. 1999. Use of Bacillus subtillis and related organisms as biofungicides. Pesticide Science 27: 133140.
  • Pusey PL, Wilson CL. 1984. Postharvest biological control of stone fruit brown rot by Bacillus subtillis. Plant Disease 68: 753756.
  • Raaijmakers JM, Leeman M, Van Oorschot MMP, Van Der Sluis I, Schippers B, Bakker PAHM. 1995a. Dose–response relationships in biological control of Fusarium wilt of radish by Pseudomonas spp. Phytopathology 85: 10751081.
  • Raaijmakers JM, Sluis I, Koster M, Bakker PAHM, Weisbeek PJ, Schippers B. 1995b. Utilization of heterologous siderophores and rhizosphere competence of fluorescent Pseudomonas spp. Canadian Journal of Microbiology 41: 126135.
  • Raaijmakers JM, Weller DM. 1998. Natural plant protection by 2,4-diacetylphloroglucinol – producing Pseudomonas spp. in take-all decline soils. Molecular Plant–Microbe Interactions 11: 144152.
  • Raaijmakers JM, Bonsall RE, Weller DM. 1999. Effect of population density of Pseudomonas fluorescens on production of 2,4-diacetylphloroglucinol in the rhizosphere of wheat. Phytopathology 89: 470475.
  • Raupach GS, Liu L, Murphy JF, Tuzun S, Kloepper JW. 1996. Induced systemic resistance in cucumber and tomato against cucumber mosaic cucumovirus using plant growth-promoting rhizobacteria (PGPR). Plant Disease 80: 891894.
  • Rhodes DJ, Powell KA. 1994. Biological seed treatments – the development process. BCPC Monograph 57: 303310.
  • Riedel K, Hentzer M, Geisenberger O, Huber B, Steidle A, Wu H, Hoiby N, Givskov M, Molin S, Eberl L. 2001. N-acylhomoserine-lactone-mediated communication between Pseudomonas aeruginosa and Burkholderia cepacia in mixed biofilms. Microbiology 147: 32493262.
  • Rijpkema SG, Bik EM, Jansen WH, Gielen H, Versluis LF, Stouthamer AH, Guinee PA, Mooi FR. 1992. Construction and analysis of a Vibrio cholerae delta-aminolevulinic acid auxotroph which confers protective immunity in a rabbit model. Infection and Immunity 60: 21882193.
  • Ross IL, Alami Y, Harvey PR, Achouak W, Ryder MH. 2000. Genetic diversity and biological control activity of novel species of closely related pseudomonads isolated from wheat field soils in South Australia. Applied Environmental Microbiology 66: 16091616.
  • Rovira AD. 1956. A study of the development of the root surface microflora during the initial stages of plant growth. Journal of Applied Bacteriology 19: 7279.
  • RuizDuenas FJ, Martinez MJ. 1996. Enzymatic activities of Trametes versicolar and Pleurotus eryngii implicated in biocontrol of Fusarium oxysporum f. sp. lycopersici. Current Microbiology 32: 151155.
  • Salmond GPC, Bycroft BW, Stewart GSAB, Williams P. 1995. The bacterial ‘enigma’: cracking the code of cell-cell communication. Molecular Microbiology 16: 615624.
  • Sands DC, Rovira AD. 1971. Pseudomonas fluorescens biotype G, the dominant fluorescent pseudomonad in South Australian soils and wheat rhizospheres. Journal of Applied Bacteriology 34: 261275.
  • Schaefer AL, Hanzelka BL, Eberhard A, Greenberg EP. 1996. Quorum sensing in Vibrio fischeri: probing autoinducer LuxR interactions with autoinducer analogs. Journal of Bacteriology 178: 28972901.
  • Scher FM, Baker R. 1980. Mechanism of biological control in a fusarium-suppressive soil. Phytopathology 72: 15671573.
  • Scher FM, Kloepper JW, Singleton CA. 1985. Chemotaxis of fluorescent Pseudomonas spp. to soybean seed exudates in vitro and in soil. Canadian Journal of Microbiology 31: 570574.
  • Scher FM, Kloepper JW, Singleton CA, Zaleska I, Laliberti M. 1988. Colonization of soybean roots by Pseudomonas and Serratia species: relationship to bacterial motility, chemotaxis, and generation time. Phytopathology 78: 10551059.
  • Schippers B, Bakker AW, Bakker PAHM. 1987. Interactions of deleterious and beneficial rhizosphere microorganisms and the effect of cropping practices. Annual Review of Phytopathology 25: 339358.
  • Schippers B, Scheffer RJ, Lugtenberg BJJ, Weisbeek PJ. 1995. Biocoating of seeds with plant growth-promoting rhizobacteria to improve plant establishment. Outlook Agriculture 24: 179185.
  • Schroth MN, Hancock JG. 1981. Disease suppressive soil and root colonizing bacteria. Science 216: 13761381.
  • Séveno NA, Morgan JA, Wellington EM. 2001. Growth of Pseudomonas aureofaciens PGS12 and the dynamics of HHL and phenazine production in liquid culture, on nutrient agar, and on plant roots. Microbial Ecology 41: 314324.
  • Shadel GS, Devine JH, Baldwin TO. 1990. Control of the lux regulon of Vibrio fischeri. Journal of Bioluminescence and Chemiluminescence 5: 99106.
  • Shapira R, Ordentlich A, Chet I, Oppenheim AB. 1989. Control of plant diseases by chitinase expressed from cloned DNA in Escherichia coli. Phytopathology 79: 12461249.
  • Shapiro JA. 1998. Thinking about bacterial populations as multicellular organisms. Annual Review of Microbiology 52: 81104.
  • Shih PC, Huang CT. 2002. Effects of quorum-sensing deficiency on Pseudomonas aeruginosa biofilm formation and antibiotic resistance. Journal of Antimicrobial Chemotherapy 49: 309314.
  • Silo-suh LA, Lethbridge BJ, Raffel SJ, He H, Clardy J, Handelsman J. 1994. Biological activities of two fungistatic antibiotics produced by Bacillus cereus UW85. Applied Environmental Microbiology 60: 20232030.
  • Simons M, Van Der Bij AJ, Brand J, De Weger LA, Wijffelman CA, Lugtenberg BJJ. 1996. Gnotobiotic system for studying rhizosphere colonization by plant growth-promoting Pseudomonas bacteria. Molecular Plant–Microbe Interactions 9: 600607.
  • Simons M, Permentier HP, De Weger LA, Wijffelman CA, Lugtenberg BJJ. 1997. Amino acid synthesis is necessary for tomato root colonization by Pseudomonas fluorescens strain WCS365. Molecular Plant–Microbe Interactions 10: 102106.
  • Sitnikov DM, Schineller JB, Baldwin TO. 1995. Transcriptional regulation of bioluminesence genes from Vibrio fischeri. Molecular Microbiology 17: 801812.
  • Sivasithamparam K. 1998. Root cortex – the final frontier for the biocontrol of root-rot with fungal antagonists: a case study on a sterile red fungus. Annual Review of Phytopathology 36: 439452.
  • Slininger PJ, Jackson MA. 1992. Nutritional factors regulating growth and accumulation of phenazine 1-carboxylic acid by Pseudomonas fluorescens 2–79. Applied Microbiological Biotechnology 37: 388392.
  • Slininger PJ, Shea-Wilbur MA. 1995. Liquid-culture pH, temperature, and carbon (not nitrogen) source regulate phenazine productivity of the take-all biocontrol agent Pseudomonas fluorescens 2–79. Applied Environmental Microbiology 43: 794800.
  • Smith KP, Goodman RM. 1999. Host variation for interactions with beneficial plant-associated microbes. Annual Review of Phytopathology 37: 473491.
  • Smith KP, Handelsman J, Goodman RM. 1999. Genetic basis in plants for interactions with disease-suppressive bacteria. Proceedings of the National Academy of Sciences of the USA 96: 47864790.
  • Stevens AM, Greenberg EP. 1997. Quorum sensing in Vibrio fischeri: essential elements for activation of the luminescence genes. Journal of Bacteriology 179: 557562.
  • Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, Hickey MJ, Brinkman FS, Hufnagle WO, Kowalik DJ, Lagrou M, Garber RL, Goltry L, Tolentino E, Westbrock-Wadman S, Yuan Y, Brody LL, Coulter SN, Folger KR, Kas A, Larbig K, Lim R, Smith K, Spencer D, Wong GK, Wu Z, Paulsen IT. 2000. Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic pathogen. Nature 406: 959964.
  • Stutz EW, Defago G, Kern H. 1986. Naturally occurring fluorescent pseudomonads involved in the suppression of black root rot of tobacco. Phytopathology 76: 181185.
  • Suh SJ, Silo-Suh L, Woods DE, Hassett DJ, West SE, Ohman DE. 1999. Effect of rpoS mutation on the stress response and expression of virulence factors in Pseudomonas aeruginosa. Journal of Bacteriology 181: 38903897.
  • Suslow TV. 1982. Role of root-colonizing bacteria in plant growth. In: LacyG, MountM, eds. Pathogenic prokaryotes, Vol. 1. New York, NY, USA: Academic Press, Inc., 187223.
  • Suslow TV, Schroth MN. 1982. Rhizobacteria of sugar beets: effects of seed application and root colonization on yield. Phytopathology 72: 199206.
  • Swift S, Throup JP, Williams P, Salmond GPC, Stewart GSAB. 1996. Quorum sensing: a population density component in the determination of bacterial phenotype. Trends in Biochemistry and Science 21: 214219.
  • Swift S, Winson MK, Chan PF, Bainton NJ, Birdsall M, Reeves PJ, Rees CE, Chhabra SR, Hill PJ, Throup JP, Bycroft BW, Salmond GPC, Williams P, Stewart GSAB. 1993. A novel strategy for the isolation of luxI homologues: evidence for the widespread distribution of a LuxR: LuxI superfamily in enteric bacteria. Molecular Microbiology 10: 511520.
  • Tambong JT, Hofte M. 2001. Phenazines are involved in biocontrol of Pythium myriotylum on cocoyam by Pseudomonas aeruginosa PNA1. European Journal of Plant Pathology 107: 511521.
  • Thomashow LS, Weller DM. 1988. Role of a phenazine antibiotic from Pseudomonas fluorescens in biological control of Gaeumannomyces graminis var. tritici. Journal of Bacteriology 170: 34993508.
  • Thomashow LS, Weller DM. 1995. Current concepts in the use of introduced bacteria for biological disease control: mechanisms and antifungal metabolites. In: StaceyG, KeenNT, eds. Plant–microbe interactions. New York, NY, USA: Chapman & Hall, 187235.
  • Thomashow LS, Weller DM, Bonsall RF, Pierson LS III. 1990. Production of the antibiotic phenazine-1-carboxylic acid by fluorescent Pseudomonas species in the rhizosphere of wheat. Applied Environmental Microbiology 56: 908912.
  • Thrane C, Harder NT, Neiendam NM, Sorensen J, Olsson S. 2000. Viscosinamide-producing Pseudomonas fluorescens DR54 exerts a biocontrol effect on Pythium ultimum in sugar beet rhizosphere. FEMS Microbiological Ecology 33: 139146.
  • Ton J, Van Pelt JA, Van Loon LC, Pieterse CMJ. 2002. Differential effectiveness of salicylate-dependent and jasmonate/ethylene-dependent induced resistance in Arabidopsis. Molecular Plant–Microbe Interactions 15: 2734.
  • Toohey JI, Nelson CD, Krotkov G. 1965. Toxicity of phenazine carboxylic acid to some bacteria, algae, higher plants, and animals. Canadian Journal of Botany 43: 11511155.
  • Truitman P, Nelson E. 1992. Production of non-volatile and volatile inhibitors of Pythium ultimum sporangium germination and mycelial growth by strains of Enterobacter cloacae. Phytopathology 82: 1120.
  • Turner JM, Messenger AJ. 1986. Occurence, biochemistry and physiology of phenazine pigment production. Advances in Microbial Physiology 27: 211275.
  • Ulitzur S, Dunlap PV. 1995. Regulatory circuitry controlling luminescence autoinduction in Vibrio fischeri. Photochemistry and Photobiology 62: 625632.
  • Vincent MN, Harrison LA, Brackin JM, Kovacevich PE, Mukerji P, Weller DM, Pierson EA. 1991. Genetic analysis of the antifungal activity of a soilborne Pseudomonas aureofaciens strain. Applied Environmental Microbiology 57: 29282934.
  • Voisard C, Keel C, Haas D, Defago G. 1989. Cyanide production by Pseudomonas fluorescens helps suppress black root rot of tobacco under gnotobiotic conditions. EMBO Journal 8: 351358.
  • Ward DM. 1989. Molecular probes for analysis of microbial communities. In: CharacklisWG, WildererPA, eds. Structure and function of biofilms. New York, NY, USA: John Wiley & Sons Ltd, 145155.
  • Watson D, MacDermot J, Wilson R, Cole PJ, Taylor GW. 1986. Purification and structural analysis of pyocyanin and 1-hydroxyphenazine. European Journal of Biochemistry 159: 309313.
  • Van Wees SCM, Pieterse CMJ, Trijssenaar A, Van T, Westende YAM, Hartog F, Van Loon LC. 1997. Differential induction of systemic resistance in Arabidopsis by biocontrol bacteria. Molecular Plant–Microbe Interactions 10: 716724.
  • Van Wees SCM, De Swart EA, Van Pelt JA, Van Loon LC, Pieterse CM. 2000. Enhancement of induced disease resistance by simultaneous activation of salicylate- and jasmonate-dependent defense pathways in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the USA 97: 87118716.
  • Weert de S, Vermeiren H, Mulders IHM, Kuiper IHM, Bloemberg GV, Vanderleyden J, De Mot R, Lugtenberg BJJ. 2002. Chemotaxis towards exudate components is an important trait for tomato root colonisation by Pseudomonas fluorescens. Molecular Plant–Microbe Interactions 15: 11731180.
  • De Weger LA, Van Der Vlught CIM, Wijfjes AHM, Bakker PAHM, Schippers B, Lugtenberg BJJ. 1987. Flagella of a plant growth-stimulating Pseudomonas fluorescens strain are required for colonization of potato roots. Journal of Bacteriology 169: 27692773.
  • De Weger LA, Bakker PAHM, Schippers B, Van Loosdrecht MCM, Lugtenberg BJJ. 1989. Pseudomonas spp. with mutational changes in the O-antigenic side chain of their lipopolysaccharide are affected in their ability to colonize potato roots. In: LugtenbergBJJ, ed. Signal molecules in plants and plant–microbe interactions. NATO ASI Series H. Heidelberg, Germany: Springer-Verlag Berlin Heidelberg, 197202.
  • Wei G, Kloepper JW, Tuzun S. 1991. Induction of systemic resistance of cucumber to Colletotrichum orbiculare by select strains of plant growth-promoting rhizobacteria. Phytopathology 81: 15081512.
  • Weisbeek PJ, Gerrits H. 1999. Iron and biocontrol. In: StaceyG, KeenNT, eds. Plant–microbe interactions. St Paul, MN, USA: APS Press, 217250.
  • Weiser JN, Williams A, Moxon ER. 1990. Phase-variable lipopolysaccharide structures enhance the invasive capacity of Haemophilus influenzae. Infection and Immunity 58: 34553457.
  • Weller DM. 1988. Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Annual Review of Phytopathology 26: 379407.
  • Weller DM, Cook RJ. 1983. Suppression of take-all of wheat by seed treatments with fluorescent pseudomonads. Phytopathology 73: 463469.
  • Weller DM, Zhang BX, Cook RJ. 1985. Application of a rapid screening test for selection of bacteria suppressive to take-all of wheat. Plant Disease 69: 710713.
  • Whistler CA, Corbell NA, Sarniguet A, Ream W, Loper JE. 1998. The two-component regulators GacS and GacA influence accumulation of the stationary-phase sigma factor sigma σs and the stress response in Pseudomonas fluorescens Pf-5. Journal of Bacteriology 180: 66356641.
  • Whiteley M, Greenberg EP. 2001. Promoter specificity elements in Pseudomonas aeruginosa quorum-sensing-controlled genes. Journal of Bacteriology 183: 55295534.
  • Winson MK, Camara M, Latifi A, Foglino M, Chhabra SR, Daykin M, Bally M, Chapon V, Salmond GPC, Bycroft BW, Lazdunski A, Stewart GSAB, Williams P. 1995. Multiple N-acyl-l-homoserine lactone signal molecules regulate production of virulence determinants and secondary metabolites in Pseudomonas aeruginosa. Proceedings of the National Academy of Sciences of the USA 92: 94279431.
  • Winson MK, Swift S, Fish L, Throup JP, Jorgensen F, Chhabra SR, Bycroft BW, Williams P, Stewart GS. 1998. Construction and analysis of luxCDABE-based plasmid sensors for investigating N-acyl homoserine lactone-mediated quorum sensing. FEMS Microbiological Letters 163: 185192.
  • Wood DW, Gong FC, Daykin MM, Williams P, Pierson LS. 1997. N-acyl-homoserine lactone-mediated regulation of phenazine gene expression by Pseudomonas aureofaciens 30–84 in the wheat rhizosphere. Journal of Bacteriology 179: 76637670.
  • Wood DW, Pierson LS. 1996. The phzI gene of Pseudomonas aureofaciens 30–84 is responsible for the production of a diffusible signal required for phenazine antibiotic production. Gene 168: 4953.
  • You Z, Fukushima J, Tanaka K, Kawamoto S, Okuda K. 1998. Induction into the stationary growth phase on the Pseudomonas aeruginosa by N- acylhomoserine lactone. FEMS Microbiological Letters 164: 99106.