SEARCH

SEARCH BY CITATION

References

  • Van Balen E, Van De Geijn SC, Desmet GM. 1980. Autoradiographic evidence for the incorporation of cadmium into calcium oxalate crystals. Zeitschrift für Pflanzenphysiologie 97: 123133.
  • Choi Y-E, Harada E, Wada M, Tsuboi H, Morita Y, Kusano T, Sano H. 2001. Detoxification of cadmium in tobacco plants: formation and active excretion of crystals containing cadmium and calcium through trichomes. Planta 213: 4550.
  • Cobbett C, Goldsbrough P. 2002. Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annual Review of Plant Biology 53: 159182.
  • Gekeler W, Grill E, Winnacker E-L, Zenk MH. 1988. Algae sequester heavy metals via synthesis of phytochelatin complexes. Archives of Microbiology 150: 197202.
  • Grill E, Löffler S, Winnacker E-L, Zenk MH. 1989. Phytochelatins, the heavy-metal-binding peptides of plants, are synthesized from glutathione by a specific γ-glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase). Proceedings of the National Academy of Sciences, USA 86: 68386842.
  • Grill E, Winnacker E-L, Zenk MH. 1985. Phytochelatins: the principal heavy-metal complexing peptides of higher plants. Science 230: 674676.
  • Gupta SC, Goldsbrough PB. 1991. Phytochelatin accumulation and cadmium tolerance in selected tomato cell lines. Plant Physiology 97: 306312.
  • Howden R, Goldsbrough PB, Andersen CR, Cobbett CS. 1995. Cadmium-sensitive, cad1 mutants of Arabidopsis thaliana are phytochelatin deficient. Plant Physiology 107: 10591066.
  • Inouhe M, Ninomiya S, Tohoyama H, Joho M, Murayama T. 1994. Different characteristics of roots in the cadmium-tolerance and Cd-binding complex formation between mono- and dicotyledonous plants. Journal of Plant Research 107: 201207.
  • Jackson PJ, Roth EJ, McClure PR, Naranjo CM. 1984. Selection, isolation, and characterization of cadmium-resistant Datura innoxia suspension cultures. Plant Physiology 75: 914918.
  • Khan DH, Duckett JG, Frankland B, Kirkham JB. 1984. An X-ray microanalytical study of the distribution of cadmium in roots of Zea mays L. Journal of Plant Physiology 115: 1928.
  • Kneer RT, Zenk MH. 1997. The formation of Cd-phytochelatin complexes in plant cell cultures. Phytochemistry 44: 6974.
  • Kubota H, Sato K, Yamada T, Maitani T. 2000. Phytochelatin homologs induced in hairy roots of horseradish. Phytochemistry 53: 239245.
  • Küpper H, Küpper F, Spiller M. 1996. Environmental relevance of heavy metal-substituted chlorophylls using the example of water plants. Journal of Experimental Botany 47: 259266.
  • Leopold I, Günther D, Neumann D. 1998. Application of high-performance liquid chromatography–inductively coupled plasma mass spectrometry to the investigation of phytochelatin complexes and their role in heavy metal detoxification in plants. Analusis Magazine 26: 2832.
  • Leopold I, Günther D, Schmidt J, Neumann D. 1999. Phytochelatins and heavy metal tolerance. Phytochemistry 50: 13231328.
  • Maitani T, Kubota H, Sato K, Yamada T. 1996. The composition of metals bound to class III metallothionein (phytochelatin and its desglycyl peptide) induced by various metals in root cultures of Rubia tinctorum. Plant Physiology 110: 11451150.
  • Mehra RJ, Mulchandani P, Hunter TC. 1994. Role of CdS quantum crystallites in cadmium resistance in Candida glabrata. Biochemical and Biophysical Research Communications 200: 11931200.
  • Murasugi A, Wada C, Hayashi Y. 1981. Cadmium-binding peptide induced in fission yeast, Schizosaccharomyces pombe. Journal of Biochemistry 90: 15611564.
  • Mutoh N, Hayashi Y. 1988. Isolation of mutants of Schizosaccharomyces pombe unable to synthesize cadystin, small cadmium-binding peptides. Biochemical and Biophysical Research Communications 151: 3239.
  • Ortiz DF, Ruscitti T, McCue KF, Ow DW. 1995. Transport of metal-binding peptides by HMT1, a fission yeast ABC-type vacuolar membrane protein. Journal of Biological Chemistry 270: 47214728.
  • Rauser WE. 1987. Compartmental efflux analysis and removal of extracellular cadmium from roots. Plant Physiology 85: 6265.
  • Rauser WE. 1999. Structure and function of metal chelators produced by plants – the case for organic acids, amino acids, phytin, and metallothioneins. Cell Biochemistry and Biophysics 31: 1948.
  • Rauser WE. 2000. Roots of maize seedlings retain most of their cadmium through two complexes. Journal of Plant Physiology 156: 545551.
  • Rauser WE, Meuwly P. 1995. Retention of cadmium in roots of maize seedlings. Role of complexation by phytochelatins and related thiol peptides. Plant Physiology 109: 195202.
  • Salt DE, Rauser WE. 1995. MgATP-dependent transport of phytochelatins across the tonoplast of oat roots. Plant Physiology 107: 12931301.
  • Sánches-Fernández R, Davies TGE, Coleman JOD, Rea PA. 2001. The Arabidopsis thaliana ABC protein superfamily, a complete inventory. Journal of Biological Chemistry 276: 3023130244.
  • Sanità di Toppi L, Gabrielli R. 1999. Response to cadmium in higher plants. Environmental and Experimental Botany 41: 105130.
  • Sauvé S, Norvell WA, McBride M, Hendershot W. 2000. Speciation and complexation of cadmium in extracted soil solutions. Environmental Science and Technology 34: 291196.
  • Speiser DM, Abrahamson SL, Banuelos G, Ow DW. 1992. Brassica juncea produces a phytochelatin-cadmium-sulfide complex. Plant Physiology 99: 817821.
  • Vacchina V, Polec K, Szpunar J. 1999. Speciation of cadmium in plant tissues by size-exclusion chromatography with ICP-MS detection. Journal of Analytical Atomic Spectrometry 14: 15571566.
  • Vatamaniuk OK, Mari S, Lu Y-P, Rea PA. 2000. Mechanism of heavy metal ion activation of phytochelatin (PC) synthase – blocked thiols are sufficient for PC synthase-catalyzed transpeptidation of glutathione and related thiol peptides. Journal of Biological Chemistry 275: 3145131459.
  • Vögeli-Lange R, Wagner GJ. 1990. Subcellular localization of cadmium and cadmium-binding peptides in tobacco leaves – implication of a transport function for cadmium-binding peptides. Plant Physiology 92: 10861093.
  • Weigel HJ, Jäger HJ. 1980. Subcellular distribution and chemical form of cadmium in bean plants. Plant Physiology 65: 480482.
  • Yen TY, Villa JA, DeWitt JG. 1999. Analysis of phytochelatin-cadmium complexes from plant tissue culture using nano-electrospray ionization tandem mass spectrometry and capillary liquid chromatography/electrospray ionization tandem mass spectrometry. Journal of Mass Spectrometry 34: 930941.
  • Zenk MH. 1996. Heavy metal detoxification in higher plants – a review. Gene 179: 2130.
  • Zindler-Frank E, Hönow R, Hesse A. 2001. Calcium and oxalate content of the leaves of Phaseolus vulgaris at different calcium supply in relation to calcium oxalate crystal formation. Journal of Plant Physiology 158: 139144.