SEARCH

SEARCH BY CITATION

References

  • Adams MA, Grierson PF. 2001. Stable isotopes at natural abundance in terrestrial plant ecology and ecophysiology: an update. Plant Biology 3: 299310.
  • Arndt S, Wanek W, Clifford SC, Popp M. 2000. Contrasting adaptation to drought stress in field-grown Ziziphus mauritiana and Prunus persica trees: Water relations, osmotic adjustment and carbon isotope composition. Australian Journal of Plant Physiology 27: 985996.
  • Aussenac G. 2000. Interactions between forest stands and microclimate: Ecophysiological aspects and consequences for silviculture. Annals of Forest Science 57: 287301.
  • Bonal D, Sabatier D, Montpied P, Tremeaux D, Guehl JM. 2000. Interspecific variability of δ13C among trees in rainforests of French Guiana: functional groups and canopy integration. Oecologia 124: 454468.
  • Breda N, Granier A, Aussenac G. 1995. Effects of thinning on soil and tree water relations, transpiration and growth in an oak forest (Quercus petraea (Matt.) Liebl.). Tree Physiology. 15: 295306.
  • Broadmeadow MSJ, Griffiths H. 1993. Carbon isotope discrimination and the coupling of CO2 fluxes within forest canopies. In: EhleringerJR, HallAE, FarquharGD, eds. Stable isotopes and plant carbon-water relations. San Diego, CA, USA: Academic Press, 109130.
  • Brooks JR, Flanagan LB, Buchmann N, Ehleringer JR. 1997. Carbon isotope composition of boreal plants: functional grouping of life forms. Oecologia 110: 301311.
  • Buchmann N. 2000. Biotic and abiotic factors controlling soil respiration rates in Picea abies stands. Soil Biology and Biochemistry. 32: 16251635.
  • Buchmann N, Brooks JR, Ehleringer JR. 2002. Predicting daytime carbon isotope ratios of atmospheric CO2 within forest canopies. Functional Ecology 16: 4959.
  • Buchmann N, Brooks JR, Flanagan LB, Ehleringer JR. 1998. Carbon isotope discrimination of terrestrial ecosystems. In: GriffithsH, ed. Stable isotopes. Oxford, UK: Bios Scientific Publishers Ltd, 203221.
  • Chapin FS III, Reynolds HL, D’Antonio CM, Eckhart VM. 1996. The functional role of species in terrestrial ecosystems. In: WalterB, SteffenW, eds. Global change and terrestrial ecosystems. Cambridge, UK: Cambridge University Press, 403428.
  • Craig H. 1957. Isotopic standards for carbon and oxygen and correction factors for mass spectrometric analysis of carbon dioxide. Geochemica et Cosmochimica Acta 12: 133149.
  • Damesin C, Rambal S, Joffre R. 1998. Seasonal and annual changes in leaf δ13C in two co-occurring Mediterranean oaks: relations to leaf growth and drought progression. Functional Ecology 12: 778785.
  • Dertz W. 1996. Buchenwälder im Zielkatalog der Forstwirtschaft. Buchenwälder – Ihr Schutz und Ihre Nutzung. Bonn, Germany: Stiftung Wald in Not, 28.
  • Dupouey J-L, Leavitt S, Choisnel E, Jourdain S. 1993. Modeling carbon isotope fractionation in tree rings based on effective evapotranspiration and soil water status. Plant, Cell & Environment 16: 939947.
  • DVWK. 1986. Ermittlung des Interzeptionsverlustes in Waldbeständen bei Regen. In: Deutscher Verband für Wasserwirtschaft und Kulturbau, ed. Merkblätter Zur Wasserwirtschaft 211. Hamburg, Berlin, Germany: Verlag Paul Parey.
  • Ekblad A, Högberg P. 2001. Natural abundance in 13C in CO2 respired from forest soils reveals speed of link between tree photosynthesis and root respiration. Oecologia 127: 305308.
  • Farquhar GD, Ehleringer JR, Hubick KT. 1989. Carbon isotope discrimination and photosynthesis. Annual Reviews of Plant Physiology and Plant Molecular Biology 40: 503537.
  • Fotelli MN, Geßler A, Peuke AD, Rennenberg H. 2001. Drought affects the competition between Fagus sylvatica L. seedlings and an early successional species (Rubus fruticosus): growth, water status and δ13C composition. New Phytologist 151: 427435.
  • Fotelli NM, Nahm M, Heidenfelder A, Papen H, Rennenberg H, Geßler A. 2002. Soluble nonprotein nitrogen compounds indicate changes in the nitrogen status of beech seedlings due to climate and thinning. New Phytologist 154: 8597.
  • Geßler A, Schrempp S, Matzarakis A, Mayer H, Rennenberg H, Adams MA. 2001. Carbon isotope composition of phloem sap, wood and foliage of beech (Fagus sylvatica L.): effects of water availability and radiation during the growing season. New Phytologist 150: 653664.
  • Guehl JM, Domenach AM, Bereau M, Barigah TS, Casabianca H, Ferhi A, Garbaye J. 1998. Functional diversity in an Amazonian rainforest of French Guiana. A dual isotope approach (δ15N and δ13C). Oecologia 116: 316330.
  • Högberg P, Nordgren A, Buchmann N, Taylor AFS, Ekblad A, Högberg MN, Nyberg G, Ottosson-Löfvenius M, Read DJ. 2002. Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature 411: 789792.
  • Holst T, Rost J, Schindler D, Matzarakis A, Mayer H. 2000. Mikroklimatische Untersuchungen in südwestdeutschen Buchenbeständen. Ber. Meteor. Institute University Freiburg 5: 123135.
  • Huc R, Ferhi A, Guehl JM. 1994. Pioneer and late stage tropical rainforest tree species (French Guiana) growing under common conditions differ in leaf gas exchange regulation, carbon isotope discrimination and leaf water potential. Oecologia 99: 297305.
  • Hultine KR, Marshall JD. 2000. Altitude trends in conifer leaf morphology and stable carbon isotope composition. Oecologia 123: 3240.
  • IPCC. 2001. Climate Change 2001: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). McCarthyJJ, CanzianiOF, LearyNA, DokkenDJ, WhiteKS, eds. Cambridge, UK: Cambridge University Press.
  • Keitel C, Adams MA, Holst T, Matzarakis A, Mayer H, Rennenberg H, Geßler A. 2003. Carbon and oxygen isotope composition of organic matter in the phloem sap provides a short-term measure for stomatal conductance of European beech (Fagus sylvatica L.). Plant, Cell & Environment (In press.)
  • Kirchgäßner A. 2001. Phänoklimatologie von Buchenwäldern im Südwesten der Schwäbischen Alb. PhD-thesis, University of Freiburg, Germany.
  • Körner C. 1994. Scaling from species to vegetation: The usefulness of functional groups. In: SchulzeE-D, MooneyHA, eds. Biodiversity and ecosystem function. Berlin, Heidelberg, Germany: Springer-Verlag, 118140.
  • Korol RL, Kirschbaum MUF, Farquhar GD, Jeffreys M. 1999. Effects of water status and soil fertility on the C-isotope signature in Pinus radiata. Tree Physiology 19: 551562.
  • Kozlowski TT, Pallardy SG. 1997. Physiology of woody plants, 2nd edn. San Diego, CA, USA: Academic Press.
  • Lauteri M, Scartazza A, Guido MC, Brugnoli E. 1997. Genetic variation in photosynthetic capacity, carbon isotope discrimination and mesophyll conductance in provenances of Castanea sativa adapted to different environments. Functional Ecology 11: 675683.
  • Lawlor DW. 1998. Plant responses to global change: temperature and drought stress. In: De KokLJ, StulenI, eds. Responses of plant metabolism to air pollution and global change. Leiden, The Netherlands: Backhuys Publishers, 193208.
  • Le Roux-Swarthout DJ, Terwilliger VJ, Martin CE. 2001. Deviation between δ13C and leaf intercellular CO2 in Salix interior cuttings developing under low light. International Journal of Plant Sciences 162: 10171024.
  • Leavitt SW, Long A. 1986. Stable-carbon isotope variability in tree foliage and wood. Ecology 67: 10021010.
  • Linder S, McMutrie RE, Landsberg. 1996. Global change impacts on managed forests. In: WalterB, SteffenW, eds. Global change and terrestrial ecosystems. Cambridge, UK: Cambridge University Press, 275290.
  • Livingston NJ, Spittlehouse DL. 1996. Carbon isotope fractionation in tree ring early and late wood in relation to intra-growing season water balance. Plant, Cell & Environment 19: 768774.
  • Lof M. 2000. Establishment and growth in seedlings of Fagus sylvatica and Quercus robur: influence of interference from herbaceous vegetation. Canadian Journal of Forest Research 30: 855864.
  • Madsen P. 1995. Effects of soil water content, fertilization, light, weed competition and seedbed type on natural regeneration of beech (Fagus sylvatica). Forest Ecology and Management 72: 251264.
  • Ministerium für Ländlichen Raum, Ernährung, Landwirtschaft und Forsten in Baden-Württemberg, eds. 1997. Richtlinien zur Jungbe-stands-pflege.
  • Mizunaga H. 2000. Prediction of PPFD variance at forest floor in a thinned Japanese cypress plantation. Forest Ecology and Management 126: 309319.
  • Oberdorfer E. 1983. Pflanzensoziologische Exkursionsflora. Stuttgart, Germany: Eugen Ulmer.
  • Pate JS, Arthur D. 1998. δ13C analysis of phloem sap carbon: novel means of evaluating seasonal water stress and interpreting carbon isotope signatures of foliage and trunk wood of Eucalyptus globulus. Oecologia 117: 301311.
  • Peñuelas J. 1996. Overview on current and past global changes in Mediterranean ecosystems. Orsis 11: 165176.
  • Porté A, Loustau D. 2001. Seasonal and interannual variations in carbon isotope discrimination in a maritime pine (Pinus pinaster) stand assessed form the isotopic composition of cellulose in annual rings. Tree Physiology 21: 861868.
  • Proietti P. 1998. Gas exchange in senescing leaves of Olea europaea L. Photosynthetica 35: 579587.
  • Saxe H, Cannel MG, Johnsen O, Ryan MG, Vourlitis G. 2001. Tansley Review, 123. Tree and forest functioning in response to global warming. New Phytologist 149: 369400.
  • Scheidegger Y, Saurer M, Bahn M, Siegwolf R. 2000. Linking stable oxygen and carbon isotopes with stomatal conductance and photosynthetic capacity: a conceptual model. Oecologia 125: 350357.
  • Schleser GH, Helle G, Lücke A, Vos H. 1999. Isotope signals as climate proxies: the role of transfer functions in the study of terrestrial archieves. Quaternary Science Reviews 18: 927943.
  • Scholander PF, Hammel T, Bradstreet ED, Hemmingsen EA. 1965. Sap pressure in vascular plants. Science 148: 339345.
  • Tarp P, Helles F, Holten-Andersen P, Larsen JB, Strange N. 2000. Modelling near-natural silvicultural regimes for beech – an economic sensitivity analysis. Forest Ecology and Management 130: 187198.
  • Thibodeau L, Raymond P, Camire C, Munson AD. 2000. Impact of precommercial thinning in balsam fir stands on soil N dynamics, microbial biomass, decomposition, and foliar nutrition. Canadian Journal of Forest Research 30: 229238.
  • Walcroft AS, Silvester WB, Grace JC, Carson SD, Waring RH. 1996. Effects of branch length on carbon isotope discrimination in Pinus radiata. Tree Physiology 16: 281286.
  • Warren CR, Adams MA. 2000. Water availability and branch length determine δ13C in foliage of Pinus pinaster. Tree Physiology 20: 637643.
  • Warren CR, McGrath JF, Adams MA. 2001. Water availability and carbon isotope discrimination in conifers. Oecologia 127: 476486.