SEARCH

SEARCH BY CITATION

References

  • Al-Hiyaly SEK, McNeilly T, Bradshaw AD. 1988. The effect of zinc contamination from electricity pylons-evolution in a replicated situation. New Phytologist 110: 571580.
  • Antonovics J, Bradshaw AD, Turner RG. 1971. Heavy metal tolerance in plants. Advances in Ecological Research 7: 185.
  • Arsenault JL, Pouleur S, Messier C, Guay R. 1995. WinRHIZO, a root-measuring system with a unique overlap correction method. Hortscience 30: 906.
  • Baker AJM, Proctor J, Reeves RD. 1992. The vegetation of ultramafic (serpentine) soils. Andover, UK: Intercept Ltd.
  • Baker AJM, Walker PL. 1990. Ecophysiology of metal uptake by tolerant plants. In: ShawAJ, ed. Heavy metal tolerance in plants. Boca Raton, FL, USA: CRC Press, 155177.
  • Bannister P, Woodman RF. 1992. The influence of tolerance indices and growth on metal tolerance of pasture legumes and serpentine plants. In: BakerAJM, ProctorJ, ReevesRD, eds. The vegetation of ultramafic (serpentine) soils. Andover, UK: Intercept Ltd., 353366.
  • Boyd RS, Martens SN. 1998. Nickel hyperaccumulation by Thlaspi montanum var. montanum (Brassicaceae): a constitutive trait. American Journal of Botany 85: 259265.
  • Brochmann C, Soltis PS, Soltis DE. 1992. Multiple origins of the octoploid Scandinavian endemic Draba cacuminum: electrophoretic and morphological evidence. Nordic Journal of Botany 12: 257272.
  • Brooks RR. 1987. Serpentine and its vegetation. Beckenham, UK: Croom-Helm Ltd.
  • Carlson RW, Bazzazet FA, Rolfe GL. 1975. The effect of heavy metals on plants. II. Net photosynthesis and transpiration of whole corn and sunflower plants treated with Pb, Cd, Ni and Tl. Environmental Research 10: 113120.
  • Chaney RL. 1988. Plants can utilize iron from Fe-N,N-di-(2-hydroxybenzoyl) -ethylenediamine-N,N-diacetic acid, a ferric chelate with 106 greater formation constant than Fe-EDDHA. Journal of Plant Nutrition 11: 10331050.
  • Gabbrielli R, Pandolfini T. 1984. Effect of Mg2+ and Ca2+ on the response to nickel toxicity in a serpentine endemic and nickel-accumulating species. Physiologia Plantarum 62: 540544.
  • Gardner M, Macnair M. 2000. Factors affecting the co-existence of the serpentine endemic Mimulus nudatus Curran and its presumed progenitor, Mimulus guttatus Fischer ex DC. Biological Journal of the Linnean Society 69: 443459.
  • Gartside DW, McNeilly T. 1974. The potential for evolution of heavy metal tolerance in plants. II. Copper tolerance in normal populations of different plant species. Heredity 32: 335348.
  • Guay R, Arsenault JL. 1996. Win/MacRHIZO's root overlap compensation method. International Technical Note no. 4. Quebec, Canada: Regent Instruments Inc.
  • Hughes R, Bachmann K, Smirnoff N, Macnair MR. 2001. The role of drought tolerance in serpentine tolerance in the Mimulus guttatus Fischer ex DC. complex. South African Journal of Science 97: 581586.
  • Hultén E. 1956. The Cerastium alpinum complex. A case of introgressive hybridization. Svensk Botanisk Tidskrift 50: 411495.
  • Huss-Danell K. 1978. Nitrogenase activity measurements in intact plants of Alnus incana. Physiologia Plantarum 43: 372376.
  • Ingram C. 1988. The evolutionary basis of ecological amplitude of plant species. PhD thesis. Liverpool University, UK.
  • Jalas J, Suominen J. 1988. Atlas florae Europeae: Distribution of vascular plants in Europe. Cambridge, UK: Cambridge University Press.
  • Jenne EA. 1968. Controls on Mn, Fe, Co, Ni, Cu, and Zn concentrations in soils and water: the significant role of hydrous Mn and Fe oxides. Advances in Chemistry Series 73: 337387.
  • Jenny H. 1980. The soil resource: origin and behaviour. New York, USA: Springer-Verlag.
  • Johnston WR, Proctor J. 1981. Growth of serpentine and non-serpentine races of Festuca rubra in solutions simulating the conditions in a toxic serpentine soil. Journal of Ecology 69: 855869.
  • Jonsell B. 2001. Flora Nordica 2. Stockholm, Sweden: The Bergius Foundation, The Royal Academy of Sciences.
  • Kruckeberg AR. 1984. California serpentines: flora, vegetation, geology, soils, and management problems. London, UK: University of California Press.
  • Macnair MR. 1983. The genetic control of copper tolerance in the yellow monkey flower Mimulus guttatus. Heredity 50: 283293.
  • Macnair MR. 1990. The genetics of metal tolerance in natural populations. In: ShawAJ, ed. Heavy metal tolerance in plants. Boca Raton, FL, USA: CRC Press, 235253.
  • Macnair MR. 1993. The genetics of metal tolerance in vascular plants. New Phytologist 124: 541559.
  • Marrs RH, Proctor J. 1976. The response of serpentine and non-serpentine Agrostis stolonifera to magnesium and calcium. Journal of Ecology 64: 953964.
  • McNeilly T, Bradshaw AD. 1968. Evolutionary processes in populations of copper tolerant Agrostis tenuis Sibth. Evolution 22: 108118.
  • Nagy L, Proctor J. 1997. Soil Mg and Ni as casual factors of plant occurrence and distribution at the Meikle Kilrannoch ultramafic site in Scotland. New Phytologist 135: 561566.
  • Nicholls MK, McNeilly T. 1982. The possible polyphyletic origin of copper tolerance in Agrostis tenuis (Graminae). Plant Systematics and Evolution 140: 109117.
  • Nyberg Berglund AB, Saura A, Westerbergh A. 2001. Genetic differentiation of a polyploid plant on ultramafic soils in Fennoscandia. South African Journal of Science 97: 533535.
  • Nyberg Berglund AB, Westerbergh A. 2001. Two postglacial immigration lineages of the polyploid Cerastium alpinum (Caryophyllaceae). Hereditas 134: 171183.
  • Proctor J. 1970. Magnesium as a toxic element. Nature 227: 742743.
  • Proctor J. 1971. The plant ecology of serpentine. III. The influence of a high magnesium/calcium ratio and high nickel and chromium levels in some British and Swedish serpentine soils. Journal of Ecology 59: 827842.
  • Proctor J. 1999. Toxins, nutrient shortage and droughts: the serpentine challenge. Trends in Ecology and Evolution 14: 334335.
  • Proctor J, Baker AJM. 1994. The importance of nickel for plant growth in ultramafic (serpentine) soils. In: RossS, ed. Toxic metals in soil-plant systems. Chichester, UK: Wiley, 417432.
  • Proctor J, MacGowan ID. 1976. The influence of magnesium on nickel toxicity. Nature 260: 134.
  • Proctor J, Nagy L. 1992. Ultramafic rocks and their vegetation: an overview. In: BakerAJM, ProctorJ, ReevesRD, eds. The vegetation of ultramafic (serpentine) soils. Andover, UK: Intercept Ltd, 469494.
  • Rajakaruna N, Siddiqi MY, Whitton J, Bohm BA, Glass ADM. 2003. Differential responses to Na+/K+ and Ca2+/Mg2+ in two edaphic races of the Lasthenia californica (Asteraceae) complex: a case for parallel evolution of physiological traits. New Phytologist 157: 93103.
  • Robertson AI. 1985. The poisoning of roots of Zea Mays by nickel ions, and the protection afforded by magnesium and calcium. New Phytologist 100: 173189.
  • Rune O. 1953. Plant life on serpentines and related rocks in the north of Sweden. Acta Phytogeographica Suecica 31: 1139.
  • Rune O, Westerbergh A. 1992. Phytogeographic aspects of the serpentine flora of Scandinavia. In: BakerAJM, ProctorJ, ReevesRD, eds. The vegetation of ultramafic (serpentine) soils. Andover, UK: Intercept Ltd, 451459.
  • Schat H, Voijs R, Kuiper E. 1996. Identical major gene loci for heavy metal tolerances that have independently evolved in different local populations and subspecies of Silene vulgaris. Evolution 50: 18881895.
  • Taiz L, Zeiger E. 1998. Plant physiology, 2nd edn. Sunderland, MA, USA: Sinauer Associates, Inc.
  • Waisel Y, Eshel A. 2002. Functional diversity of various constituents of a single root system. In: WaiselY, EshelA, KafkafiU, eds. Plant roots: the hidden half. New York, USA: Marcel Dekker, 157174.
  • Westerbergh A. 1994. Serpentine and non-serpentine Silene dioica plants do not differ in nickel tolerance. Plant and Soil 167: 297303.
  • Wilkins DA. 1957. A technique for the measurement of lead tolerance in plants. Nature 180: 3738.
  • Wu L. 1990. Colonization and establishment of plants in contaminated sites. In: ShawAJ, ed. Heavy metal tolerance in plants. Boca Raton, Florida, USA: CRC Press, 269284.