Get access

Cholinesterases Display Genuine Arylacylamidase Activity but Are Totally Devoid of Intrinsic Peptidase Activities


Address correspondence and reprint requests to Dr. F. Checler at Institut de Pharmacologie Moléculaire et Cellulaire, UPR 411 CNRS, 660 route des Lucioles, Sophia Antipolis, 06560 Valbonne, France.


Abstract: The purpose of this article was to evaluate the intrinsic character of arylacylamidase and peptidase activities that are often detected along with cholinesterase activities. Various pools of commercial or affinity-purified acetylcholinesterases (AChEs) were examined. Affinity-purified AChE displays esterase- and amidase-specific activities that are similarly enriched when compared with commercial AChE. By contrast, commercial AChE exhibits much higher tryptic-like and carboxypeptidase-specific activities than the affinity-purified enzyme. The parallel enrichment in esterase and arylacylamidase suggests that these two activities are copurified, whereas peptidases do not seem to behave similarly. We show that trypsinolysis or spontaneous degradation of affinity-purified AChE leads to the conversion of the 75-kDa monomer protein into two fragments of 50 and 25 kDa after sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis. However, these modifications are without effect on the esterase, arylacylamidase, and peptidase activities. This clearly shows that AChE does not behave as a zymogen of peptidases that would have been activated on autolysis of AChE. Immunoprecipitation of AChEs with a purified monoclonal antibody directed toward electric eel AChE totally separated the esterase and arylacylamidase activities (pellet) from peptidase activities (supernatant). The immunoprecipitated AChEs could be dissociated from the interaction with IgGs. These resolubilized AChE preparations have kept the same percentage of initial esterase and arylacylamidase activities but were totally devoid of peptidase activities. These data clearly indicate that commercial and affinity-purified AChEs from Electrophorus electricus bear an intrinsic arylacylamidase activity but that the peptidase activity detected in these preparations is not an integral property of the AChE molecule and most probably represents a contaminating activity. It appears therefore unlikely that AChE may participate to the processing of the β-amyloid protein precursor (β-APP) leading to the secretion of protease nexin II and therefore acts as an APP secretase, as was recently suggested. By a similar approach, we established that human butyrylcholinesterase recovered after immunoprecipitation retained its esterase activity but was no longer able to act as a peptidase.