SEARCH

SEARCH BY CITATION

Keywords:

  • 4-Aminopyridine;
  • Seizures;
  • Hippocampus;
  • Neurodegeneration;
  • Excitotoxicity;
  • Microdialysis

Abstract

  1. Top of page
  2. Abstract
  3. REFERENCES

Abstract: 4-Aminopyridine is a powerful convulsant that induces the release of neurotransmitters, including glutamate. We report the effect of intrahippocampal administration of 4-aminopyridine at six different concentrations through microdialysis probes on EEG activity and on concentrations of extracellular amino acids and correlate this effect with histological changes in the hippocampus. 4-Aminopyridine induced in a concentration-dependent manner intense and frequent epileptic discharges in both the hippocampus and the cerebral cortex. The three highest concentrations used induced also a dose-dependent enhancement of extracellular glutamate, aspartate, and GABA levels and profound hippocampal damage. Neurodegenerative changes occurred in CA1, CA3, and CA4 subfields, whereas CA2 was spared. In contrast, microdialysis administration of a depolarizing K+ concentration and of tetraethylammonium resulted in increased amino acid levels but no epileptic activity and no or moderate neuronal damage. These results suggest that seizure activity induced by 4-aminopyridine is due to a combined action of excitatory amino acid release and direct stimulation of neuronal firing, whereas neuronal death is related to the increased glutamate release but is independent of seizure activity. In addition, it is concluded that the glutamate release-inducing effect of 4-aminopyridine results in excitotoxicity because it occurs at the level of nerve endings, thus permitting the interaction of glutamate with its postsynaptic receptors, which is probably not the case after K+ depolarization.

Abbreviations used:
4-AP

4-aminopyridine

EAA

excitatory amino acid

NMDA

N-methyl-D-aspartate

TEA

tetraethylammonium

REFERENCES

  1. Top of page
  2. Abstract
  3. REFERENCES
  • Arias C., Arrieta I., Massieu L., and Tapia R. (1997) Neuronal damage and MAP2 changes induced by the glutamate transport inhibitor dihydrokainate and by kainate in rat hippocampus in vivo. Exp. Brain Res. 116, 467476.
  • Avoli M., Barbarosie M., Lücke A., Nagao T., Lopantsev V., and Köhling R. (1996) Synchronous GABA-mediated potentials and epileptiform discharges in the rat limbic system in vitro. J. Neurosci. 16, 39123924.
  • Bagetta G., Nisticó G., and Dolly J. O. (1992) Production of seizures and brain damage in rats by α-dendrotoxin, a selective K+ channel blocker. Neurosci. Lett. 139, 3440.
  • Bagetta G., Nair S., Nisticó G., and Dolly J. O. (1994) Hippocampal damage produced in rats by α-dendrotoxin—a selective K+ channel blocker—involves non-NMDA receptor activation. Neurochem. Int. 24, 8190.
  • Bagetta G., Iannone M., Palma E., Nisticó G., and Dolly J. O. (1996) N-Methyl-D-aspartate and non-N-methyl-D-aspartate receptors mediate seizures and CA1 hippocampal damage induced by dendrotoxin-K in rats. Neuroscience 71, 613624.
  • Bargas J., Galarraga E., and Aceves J. (1989) An early outward conductance modulates the firing latency and frequency of neostriatal neurons of the rat brain. Exp. Brain Res. 75, 146156.
  • Ben-Ari Y. (1985) Limbic seizures and brain damage produced by kainic acid: mechanism and relevance to human temporal lobe epilepsy. Neuroscience 14, 375403.
  • Chandy K. G. and Gutman G. A. (1995) Voltage-gated potassium channel genes, in Handbook of Receptors and Channels (NorthR.A.), pp. 171. CRC Press, Boca Raton , Florida .
  • Chen W., Zhang J. J., Hu G. Y., and Wu C. P. (1996) Different mechanism underlying the repolarization of narrow and wide action potentials in pyramidal cells and interneurons of cat motor cortex. Neuroscience 73, 5768.
  • Choi D. W. (1988) Glutamate neurotoxicity and diseases of the nervous system. Neuron 1, 623634.
  • Cramer C. L., Stagnitto M. L., Knowles M. A., and Palmer G. C. (1994) Kainic acid and 4-aminopyridine seizure models in mice: evaluation of efficacy of antiepileptic agents and calcium antagonists. Life Sci. 54, 271275.
  • Dawson L. A. and Routledge C. (1995) Differential effects of potassium channel blockers on extracellular concentration of dopamine and 5-HT in the striatum of conscious rats. Br. J. Pharmacol. 116, 32603264.
  • Dolly J. O. and Parcej D. N. (1996) Molecular properties of voltagegated K+ channels. J. Bioenerg. Biomembr. 28, 231253.
  • Farber N. E., Poterack K. A., and Schemeling W. T. (1997) Dexmedetoimidine and halothane produce similar alterations in electroencephalographic and electromyographic activity in cats. Brain Res. 774, 131141.
  • Fragoso-Veloz J. and Tapia R. (1992) NMDA receptor antagonists protect against seizures and wet-dog shakes induced by 4-aminopyridine. Eur. J. Pharmacol. 221, 275280.
  • Gandolfo G., Gottesmann C., Bidard J. N., and Lazdunski M. (1989) Ca2+ channel blockers prevent seizures induced by a class of K+ channel inhibitors. Eur. J. Pharmacol. 160, 173177.
  • Hu P. S., Benishin C., and Fredholm B. B. (1991) Comparison of the effects of four dendrotoxin peptides, 4-aminopyridine and tetraethylammonium on the electrically evoked [3H]noradrenaline release from rat hippocampus. Eur. J. Pharmacol. 209, 8793.
  • Insel T. R., Miller L. P., and Gelhard R. E. (1990) The ontogeny of excitatory amino acid receptors in rat forebrain. I. N-Methyl-D-aspartate and quisqualate receptors. Neuroscience 35, 3143.
  • Jones R. S. G. and Heinemann U. (1987) Pre- and postsynaptic K+ and Ca2+ fluxes in area CA1 of the rat hippocampus in vitro: effects of Ni2+, TEA and 4-AP. Exp. Brain Res. 68, 205209.
  • Kaila K., Lamsa K., Smirnov S., Taira T., and Voipio J. (1997) Long-lasting GABA-mediated depolarization evoked by high-frequency stimulation in pyramidal neurons of rat hippocampal slice is attributable to a network-driven, bicarbonate-dependent K+ transient. J. Neurosci. 17, 76627667.
  • Keifer J. C., Baghdoyan H. A., Becker L., and Lydic R. (1994) Halothane decreases pontine acetylcholine release and increases EEG spindles. Neuroreport 5, 577580.
  • Koyano K., Funabiki K., and Ohmori, H. (1996) Voltage-gated ionic currents and their roles in timing coding in auditory neurons of the nucleus magnocellularis of the chick. Neurosci. Res. 26, 2945.
  • Labrakakis C., Müller T., Schmidt K., and Kettenmann H. (1997) GABAA receptor activation triggers a Cl conductance increase and a K+ channel blockade in cerebellar granule cells. Neuroscience 79, 177189.
  • Lamsa K. and Kaila K. (1997) Ionic mechanisms of spontaneous GABAergic events in rat hippocampal slices exposed to 4-aminopyridine. J. Neurophysiol. 78, 25822591.
  • Massieu L. and Tapia R. (1997) Glutamate uptake impairment and neuronal damage in young and aged rats in vivo. J. Neurochem. 69, 11511160.
  • Massieu L., Morales-Villagrán A., and Tapia R. (1995) Accumulation of extracellular glutamate by inhibition of its uptake is not sufficient for inducing neuronal damage: an in vivo microdialysis study. J. Neurochem. 64, 22622272.
  • Meldrum B. (1991) Excitotoxicity and epileptic brain damage. Epilepsy Res. 10, 5561.
  • Michelson H. B. and Wong R. K. S. (1991) Excitatory synaptic responses mediated by GABAA receptors in the hippocampus. Science 253, 14201423.
  • Morales-Villagrán A. and Tapia R. (1996) Preferential stimulation of glutamate release by 4-aminopyridine in rat striatum in vivo. Neurochem. Int. 28, 3540.
  • Morales-Villagrán A., Ureña-Guerrero M. E., and Tapia R. (1996) Protection by NMDA receptor antagonists against seizures induced by intracerebral administration of 4-aminopyridine. Eur. J. Pharmacol. 305, 8793.
  • Nisenbaum E. S., Xu Z. C., and Wilson C. J. (1994) Contribution of a slowly inactivating potassium current to the transition to firing of neostriatal spiny projection neurons. J. Neurophysiol. 71, 11741189.
  • Obrenovitch T. P. and Urenjak J. (1997) Altered glutamatergic transmission in neurological disorders: from high extracellular glutamate to excessive synaptic efficacy. Prog. Neurobiol. 51, 3987.
  • Obrenovitch T. P., Urenjak J., and Zilkha E. (1996) Evidence disputing the link between seizure activity and high extracellular glutamate. J. Neurochem. 66, 24462454.
  • Olney J. W. (1978) Neurotoxicity of excitatory amino acids, in Kainic Acid as a Tool in Neurobiology (McGeerE.G.), pp. 95121. Raven Press, New York .
  • Paxinos G. and Watson C. (1982) The Rat Brain in Stereotaxic Coordinates. Academic Press, Sydney .
  • Perrault P. and Avoli M. (1991) Physiology and pharmacology of epileptiform activity induced by 4-aminopyridine in rat hippocampal slices. J. Neurophysiol. 65, 771785.
  • Perrault P. and Avoli M. (1992) 4-Aminopyridine-induced epileptiform activity and a GABA-mediated long-lasting depolarization in the rat hippocampus. J. Neurosci. 12, 104115.
  • Salazar P., Montiel T., Brailowsky S., and Tapia R. (1994) Decrease of glutamate decarboxylase after in vivo cortical infusion of γ-aminobutyric acid. Neurochem. Int. 24, 363368.
  • Schechter L. E. (1997) The potassium channel blockers 4-aminopyridine and tetraethylammonium increase the spontaneous basal release of [3H]5-hydroxytryptamine in rat hippocampal slices. J. Pharmacol. Exp. Ther. 282, 262270.
  • Siniscalchi A., Calabresi P., Mercuri N. B., and Bernardi G. (1997) Epileptiform discharge induced by 4-aminopyridine in magnesium-free medium in neocortical neurons: physiological and pharmacological characterization. Neuroscience 81, 189197.
  • Spyker D. A., Lynch C., Shabanowitz J., and Sinn J. A. (1980) Poisoning with 4-aminopyridine: report of three cases. Clin. Toxicol. 16, 487497.
  • Staley K. J., Soldo B. L., and Proctor W. R. (1995) Ionic mechanisms of neuronal excitation by inhibitory GABAA receptors. Science 269, 977981.
  • Stein-Behrens B., Mattson M. P., Chang I., Yeh M., and Sapolsky R. (1994) Stress exacerbates neuron loss and cytoskeletal pathology in the hippocampus. J. Neurosci. 14, 53735380.
  • Storm J. F. (1993) Functional diversity of K+ currents in hippocampal pyramidal neurons. Semin. Neurosci. 5, 7992.
  • Tapia R. and Sitges M. (1982) Effect of 4-aminopyridine on transmitter release in synaptosomes. Brain Res. 250, 291299.
  • Tapia R., Sitges M., and Morales E. (1985) Mechanism of the calcium-dependent stimulation of transmitter release by 4-aminopyridine in synaptosomes. Brain Res. 361, 373382.
  • Thesleff S. (1980) Aminopyridines and synaptic transmission. Neuroscience 5, 14131419.
  • Velasco I., Tapia R., and Massieu L. (1996) Inhibition of glutamate uptake induces progressive accumulation of extracellular glutamate and neuronal damage in rat cortical cultures. J. Neurosci. Res. 44, 551561.
  • Versteeg D. H. G., Heemskerk F. M. J., Spierenburg H. A., de Graan P. N. E., and Schrama L. H. (1995) 4-Aminopyridine differentially affects the spontaneous release of radiolabelled transmitters from rat brain slices in vitro. Brain Res. 686, 233238.
  • Yamaguchi S. and Rogawski M. A. (1992) Effects of anticonvulsant drugs on 4-aminopyridine-induced seizures in mice. Epilepsy Res. 11, 916.
  • Yonekawa W. D., Kapetanovic I. M., and Kupferberg H. J. (1995) The effects of anticonvulsant agents on 4-aminopyridine induced epileptiform activity in rat hippocampus in vitro. Epilepsy Res. 20, 137150.
  • Young A. B., Sakurai S. Y., Albin R. L., Makowiec R., and Penney J. B. (1991) Excitatory amino acid receptor distribution: quantitative autoradiographic studies, in Excitatory Amino Acids and Synaptic Transmission (ThompsonW.H.), pp. 1931. Academic Press, San Diego .
  • Zhang L. and McBain C. J. (1995) Potassium conductances underlying repolarization and afterhyperpolarization in rat CA1 hippocampal interneurones. J. Physiol. (Lond.) 488, 661672.