SEARCH

SEARCH BY CITATION

References

  • 1
    Abe K., Pan L.H., Watanabe M., Konno H., Kato T., Hoyama Y. (1997) Upregulation of protein-tyrosine nitration in the anterior horn cells of amyotrophic lateral sclerosis. Neurol. Lett. 19 124128.
  • 2
    Beal M.F. (1997) Oxidative damage in neurodegenerative disease. Neuroscience 3 2127.
  • 3
    Beckman J.S., Chen J., Ischiropoulos H., Crow J.P. (1994) Oxidative chemistry of peroxynitrite. Methods Enzymol. 233 229240.
  • 4
    Bors W. & Saran M. (1987) Radical scavenging by flavonoid antioxidants. Free Radic. Res. Commun. 2 289294.
  • 5
    Daveu C., Servy C., Dendane M., Marin P., Ducrocq C. (1997) Oxidation and nitration of catecholamines by nitrogen oxides derived from nitric oxide. Nitric Oxide: Biol. Chem. 1 234243.
  • 6
    De La Breteche M., Servy C., Lenfant M., Ducrocq C. (1994) Nitration of catecholamines with nitrogen oxides in mild conditions. Tetrahedron Lett. 35 72317232.
  • 7
    Dexter D., Carter C., Agid F., Agid Y., Lees A.J., Jenner P., Marsden C.D. (1986) Lipid-peroxidation as cause of nigral cell-death in Parkinson’s disease. Lancet 2 639640.
  • 8
    D'Ischia M. & Costantini C. (1995) Nitric oxide induced nitration of catecholamine neurotransmitters: a key to neuronal degeneration. Bioorg. Med. Chem. 3 923927.
  • 9
    Fornstedt B. & Carlsson A. (1991) Vitamin C deficiency facilitates 5-S-cysteinyldopamine formation in guinea pig striatum. J. Neurochem. 56 407414.
  • 10
    Fornstedt B., Bergh I., Rosengren E., Carlsson A. (1990) An improved HPLC-electrochemical detection method for measuring brain levels of 5-S-cysteinyldopamine, 5-S-cysteinyl-3,4-dihydroxyphenylalanine, and 5-S-cysteinyl-3,4-dihydroxyphenylacetic acid. J. Neurochem. 54 578586.
  • 11
    Good P.F., Hsu A., Werner P., Perl D.P., Olanow C.W. (1998) Protein nitration in Parkinson’s disease. J. Neuropathol. Exp. Neurol. 57 338342.
  • 12
    Götz M.E., Künig G., Riederer P., Youdim M.B.H. (1994) Oxidative stress: free radical production in neural degeneration. Pharmacol. Ther. 63 37122.
  • 13
    Gow A.J., Buerk D.G., Ischiropoulos H. (1997) A novel reaction mechanism for the formation of S-nitrosothiol in vivo. J. Biol. Chem. 272 28412845.
  • 14
    Graham D.G. (1978) Oxidative pathways for catecholamines in the genesis of neuromelanin and cytotoxic quinones. Mol. Pharmacol. 14 633643.
  • 15
    Hensley K., Maidt M.L., Yu Z., Sang H., Markesbery W.R., Floyd R.A. (1998) Electrochemical analysis of protein nitrotyrosine and dityrosine in the Alzheimer’s brain indicate region-specific accumulation. J. Neurosci. 18 81268132.
  • 16
    Hughes M.N. & Nicklin H.G. (1968) The chemistry of peroxonitrites. Part I. The kinetics of decomposition of peroxynitrous acid. J. Chem. Soc. (A) 450453.
  • 17
    Ibrahim R. & Barron D. (1989) Phenylpropanoids, in Methods in Plant Biochemistry (Dey P. M. and Harborne J. B., eds), pp. 75111. Academic Press, London.
  • 18
    Jenner P. & Olanow W.C. (1996) Oxidative stress and the pathogenesis of Parkinson’s disease. Neurology 47 S161S170.
  • 19
    Jenner P. & Olanow W.C. (1998) Understanding cell death in Parkinson’s disease. Ann. Neurol. 44 S72S84.
  • 20
    Jenner P., Dexter D.T., Sian J., Schapira A.H.V., Marsden C.D. (1992) Oxidative stress as a cause of nigral cell-death in Parkinson’s disease and incidental Lewy body disease. Ann. Neurol. 32 S82S87.
  • 21
    Karoui H., Hansert B., Sand P.J., Tordo P., Bohle D.S., Kalyanraman B. (1997) Spin-trapping of free radicals formed during the oxidation of glutathione by tetramethylammonium peroxynitrite. Nitric Oxide: Biol. Med. 1 346358.
  • 22
    Kawai H., Makino Y., Hirobe M., Ohta S. (1998) Novel endogenous 1,2,3,4-tetrahydroisoquinoline derivatives: uptake by dopamine transporter and activity to induce parkinsonism. J. Neurochem. 70 745751.
  • 23
    Kerry N. & Rice-Evans C. (1998) Peroxynitrite oxidises catechols to o-quinones. FEBS Lett. 437 167171.
  • 24
    Meiergerd S.M. & Schenk J.O. (1994) Striatal transporter for dopamine: catechol structure-activity studies and susceptibility to chemical modification. J. Neurochem. 62 9981008.
  • 25
    Nappi A.J. & Vass E. (1994) Chromatographic analyses of the effects of glutathione, cysteine and ascorbic acid on the monophenol and diphenol oxidase activity of tyrosinase. J. Liq. Chromatogr. 17 793815.
  • 26
    Oldreive C., Zhao K., Paganga G., Halliwell B., Rice-Evans C. (1998) Inhibition of nitrous acid-dependent tyrosine nitration and DNA base deamination by flavonoids and other phenolic compounds. Chem. Res. Toxicol. 11 15741579.
  • 27
    Palumbo A., 'Ischia M., Misuraca G., De Martino L., Prota G. (1995) Iron- and peroxide-dependent conjugation of dopamine with cysteine: oxidative routes to the novel brain metabolite 5-S-cysteinyldopamine. Biochim. Biophys. Acta 1245 255261.
  • 28
    Pannala A., Rice-Evans C., Halliwell B., Singh S. (1997) Inhibition of peroxynitrite-mediated tyrosine nitration by catechin polyphenols. Biochem. Biophys. Res. Commun. 232 164168.DOI: 10.1006/bbrc.1997.6254
  • 29
    Pannala A., Razzaq R., Halliwell B., Singh S., Rice-Evans C. (1998) Inhibition of peroxynitrite dependent nitration by hydroxy-cinnamic acids: nitration or electron donation? Free Radic. Biol. Med. 24 594606.
  • 30
    Radi R., Beckman J.S., Bush K.M., Freeman B.A. (1990) Peroxynitrite oxidation of sulfhydryls—the cytotoxic potential of superoxide and nitric oxide. J. Biol. Chem. 266 42444250.
  • 31
    Rice-Evans C.A., Miller N.J., Paganga G. (1996) Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med. 20 933956.
  • 32
    Riederer P., Sofic E., Rausch W.D., Schmidt B., Reynolds G.P., Jellinger K., Youdim M.B.H. (1989) Transition metals, ferritin, glutathione and ascorbic acid in parkinsonian brains. J. Neurochem. 52 515520.
  • 33
    Rosengren E., Lindereliasson E., Carlsson A. (1985) Detection of 5-S-cysteinyldopamine in human brain. J. Neural Transm. 63 247253.
  • 34
    Roth H.J. & Volkmann U. (1969) Zur Kenntnis der Farbreaktion von Adrenalin mit salpetriger Säure. Arch. Pharmacol. 302 434456.
  • 35
    Smith M.A., Harris P.L.R., Sayre L.M., Beckman J.S., Perry G. (1997) Widespread peroxynitrite-mediated damage in Alzheimer’s disease. J. Neurosci. 17 26532657.
  • 36
    Spencer J.P.E., Jenner P., Daniel S.E., Lees A.J., Marsden D.C., Halliwell B. (1998) Conjugates of catecholamines with cysteine and GSH in Parkinson’s disease: possible mechanisms of formation involving reactive oxygen species. J. Neurochem. 71 21122122.
  • 37
    Su J.H., Deng G.M., Cotman C.W. (1997) Neuronal DNA damage precedes tangle formation and is associated with upregulation of nitrotyrosine in Alzheimer’s brain. Brain Res. 774 193199.
  • 38
    Tse D.C.S., McCreery R.L., Adams R.W. (1976) Potential oxidative pathways of brain catecholamines. J. Med. Chem. 19 3740.
  • 39
    Wade L.A. & Katzman R. (1975) Synthetic amino acids and the nature of L-dopa transport at the blood-brain barrier. J. Neurochem. 25 837843.
  • 40
    Zhang F. & Dryhurst G. (1993) Oxidation chemistry of dopamine: possible insights into the age-dependent loss of dopaminergic nigrostriatal neurons. Bioorg. Chem. 21 392410.DOI: 10.1006/bioo.1993.1033